A Novel Parallel Deadlock Detection
Algorithm and Architecture
Pun H. Shiu?, Yudong Tan?,

Vincent J. Mooney I}
{ship, ydtan, mooney}@ece.gatech.edu

http://codesign.ece.gatech.edu

L2Hardware/Software RTOS Group
1L ow Power Compiler Group
LAssistant Professor, 1:2Electrical and Computer Engineering
LAdjunct Assistant Professor, 1College of Computing
Georgia Institute of Technology
Atlanta, GA USA

Lhttp://crest.ece.gatech.edu
April, 2001 CODES 2001

Overall Outline

m Background - Deadlock Detection
= Parallel Algorithm

= Parallel Architecture

= Experimental Results

= Conclusion

April, 2001 CODES 2001

Motivation - Technology Trends

= Many of today’s chip designs contain 2
processors, e.g., a DSP and a microcontroller

m Future SoC designs are likely to include
¢ 4-40 heterogeneous processors

+ 10-50 on-chip hardware resources
¢ FFT, Viterbl filter, wireless communication

+ Multithreaded software which dynamically requests
and uses the resources

April, 2001 CODES 2001

SoC Software

= |deally, programmers of such future SoC
designs would only write deadlock-free code

= |f not, we provide a way to detect deadlock
very fast

m User can write code to recover from
deadlock

April, 2001 CODES 2001

Deadlock Detection Unit (DDU)

m Small & scalable parallel hardware unit
= Multiple requestors & resources

¢ In this paper, the only requestors are
processors and the only resources
are specialized hardware units like
FFT

April, 2001 CODES 2001

Overall Outline

= Motivation - Technology Trends
[]

= Parallel Algorithm

= Parallel Architecture

= Experimental Results

= Conclusion

April, 2001 CODES 2001

Background: 5
Deadlock Condition

= Properties of Resources Q1 '

¢ Mutual Exclusion: Any resource can be held exclusively,
making it unavailable to other processors

2 Non-preemption: Any resources can be released only by

the processors holding the resource.

= Behavior of processors

¢ Partial Allocation: a processor may hold some
resources while the processor requests additional resources.

+ Blocked Wait: processor must wait for unavailable
resources to become available.

April, 2001 CODES 2001

Previous Algorithms’ Run
Time
Generally the run time i1s O(m*n), where

m Is the number of processors and n Is
the number of resources.

= Path Based, O(e), or O(eEm*n), where
e Is the set of edges.

= Tree Based, O(m*n)
= Matrix Based, O(m*n)
= Message Passing Based, O(m*n)

April, 2001 CODES 2001

Overall Outline

= Motivation - Technology Trends
m Background - Deadlock Detection

m Parallel Architecture

= Experimental Results
= Conclusion

April, 2001 CODES 2001

Processor

resource
Processor

request —i—request

grant

April, 2001 CODES 2001

Example

AEEE

i ? 0

April, 2001 CODES 2001

Matrix Representation

m Each row corresponds to a requestor (processor)
¢ p; represents requestor (processor) |

m Each column corresponds to a resource
¢ (; represents resource |

m Entries in the matrix
o 1 (ry) represents a request
+ g (g;) represents a grant

+ O represents no action (neither request nor
grant)

April, 2001 CODES 2001

Properties

= Proposed Algorithm
+ Matrix Basecd
+ Modified Reduction Technique

+ Handling multiple requests, and
grants at the same time.

+ Requires simple bit-wise boolean
operations.

April, 2001 CODES 2001

SoC Example

Digital A, ;u"‘-"irelfess .
SigﬂaJ o I Ll ntertace DSP' VSP'
Processor

| PClBus |:
Intertace “(
Fol

April, 2001 CODES 2001

Deadlock and Cycle Relation

* Deadlock b $ cycles bSP - VSP

» Cyclespb $ Deadlock
(As shown in the red)

IcP PCl Wi

P\Q gl(lcP) |g2(PCl)
01(DSP)
02(VSP)

April, 2001 CODES 2001

Matrix Representation

CODES 2001

Matrix Representation:

calculation of M, and XOR

0 1 0

0 O al(

el

M, =& UM, =€ U XOR
€ 0 0u é1u

0 1 1f gLy

CODES 2001

Matrix Representation:
calculation of M_,, and XOR

below

10 00
01 O1f

11 11 01

XC)F\)below _ 1A1 “][0 1]

April, 2001 CODES 2001

Result of first |terat|on

m Based on result, we set all entries In
column 3 to zero:

April, 2001 CODES 2001

Multiple Iterations

= Continuing In this way, we continue
iterating until no more changes

m When finished, if M Is all zeros, we have
no deadlock; otherwise, we do have
deadlock

= This algorithm requires at most
2*min(m,n) Iterations

April, 2001 CODES 2001

Overall Outline

= Motivation - Technology Trends

m Background - Deadlock Detection
= Parallel Algorithm

[]

= Experimental Results

= Conclusion

April, 2001 CODES 2001

3 Processors/3 Resources:
Architecture

April, 2001 CODES 2001

Overall Outline

= Motivation - Technology Trends

m Background - Deadlock Detection
= Parallel Algorithm

= Parallel Architecture

m Conclusion

April, 2001 CODES 2001

Experiments

m Assumption
¢ Software Cycle: 83.3 MHz processor
+ Hardware Cycle:

+ Synthesized from gate-level description
¢+ Clock as fast as critical path (e.g., 4.12 ns b 242 MHz Clock)

+ Clock same as CPU clock 83.3 MHz clock (12 ns cycle time)
= Simulation

¢ Previous Algorithm: powerPc 750 runs .c in Seamless CVE
2 Proposed Algorithm: Synopsys VCS runs .v

m ~100 — 1000 times faster
¢ 99% run time reduction

April, 2001 CODES 2001

Area and Delays of DDU

IP|
Times

19)

Lines
of
Verilog

Area

AMI
0.3u

Delay/
Step

(ns)

Worst
Case
(# steps)

Worst
Case

Custom
Clk (ns)

Worst
Case
83.3Mhz

(ns)

2X3

49

186

0.91

1.82

24ns

5x5

73

264

2.21

11.05

60Nns

IXT

455

2.51

17.57

34ns

10x10

622

3.66

10

36.6

120ns

510)¢s10)

14142

4.12

50

206

600ns

April, 2001

CODES 2001

Hardware vs. Software Performance

8
o
)
©
o)
o
=
S
Z

Number of Edges

April, 2001 CODES 2001

Example: Lookup Service

Example SoC Architecture

Event Sequence of the
Example

Time

Event No.

Events

t1

el

MPC750-1 requests FFT, MPEG are
granted to MPC750-1 immediately

t2

e2

MPC750-3 requests FFT, PCI; PCl is
granted to MPC750-3 immediately.

t3

e3

MPC750-2 requests FFT, MPEG.

t4

ed

FFT is released by MPC750-1

tS

e5

FET Is granted to MPC750-2.

April, 2001

CODES 2001

Adjacency Matrices

MPC750-2

MPCTI0-3

KPCTS0 -4

MPC7a0-1

MPC750-2

MECT50-3

MECT50 -4

0

0

0

0

(0

g

0
0
0

0
0
0

0
I
0

E
0
0

0
I
0

0
0
0

b

£

MPCT50-1

MPCTI0 -3

MPCY50 -4

MPCT50-1

WPC750-2

MPC750 -3

MPCT50-4

0

r
0
g
0

(0
()
i

WL

r
0
r
0

| MPC750-1)

MPC7E0-2

WPCT50 -3

MPCT50 4

0 g 0

g 0 i
0 r 0
N 0 N

April, 2001 CODES 2001

Sequence of Events

8
MPCT50-1 | Computational Tine |

b
ftme(cycles)

HPC750-2 | Computational Time .

time{cyeles)

MPCT50-3 | Computational Tine

e

L4 = 5375 .
j timel eycles

April, 2001 CODES 2001

Deadlock Detection Time and
Total Execution Time

Method of | Detection
Deadlock TimeD t-+D
Detection (cycles)

L, =2320L- 1,225 _ g g0
23,261

April, 2001 CODES 2001

Conclusion

m Deadlock Detection Unit

¢ very small area, even for 50x50
¢ O_,(m*n) to Oy, (min(m,n)) speedup
¢ Linearly scalability in min(m,n)

+ Handle simultaneous requests/grants

= DDU can be used by multiprocessor
SoC sofware code to detect deadlock
quickly and then, for example, release
resources to get out of deadlock

April, 2001 CODES 2001

Future Work

m Integrate DDU into an RTOS

+ Monitor DDU output
+ DDU API
+ Extend to handle multiple “blocked walit”

threads on one CPU: RTOS on each processor
aggregates requests which have the blocked wait property

P each aggregate group IS represented by a unique
“processor” row

+ Try different recovery schemes
+ Perhaps some hardware assist in recovery

April, 2001 CODES 2001

