
April, 2001 CODES 2001

1,2Hardware/Software RTOS Group
1Low Power Compiler Group

1Assistant Professor, 1,2Electrical and Computer Engineering
1Adjunct Assistant Professor, 1College of Computing

Georgia Institute of Technology
Atlanta, GA USA

A Novel Parallel Deadlock Detection
Algorithm and Architecture
Pun H. ShiuPun H. Shiu22, , YudongYudong TanTan22,,

Vincent J. Mooney IIIVincent J. Mooney III11
{ship, {ship, ydtanydtan, , mooneymooney}@ece.gatech.ed}@ece.gatech.eduu

http://http://codesigncodesign..eceece..gatechgatech..eduedu

1http://crest.http://crest.eceece..gatechgatech..eduedu

April, 2001 CODES 2001

Overall Outline

nn Motivation Motivation -- Technology TrendsTechnology Trends
nn Background Background -- Deadlock DetectionDeadlock Detection
nn Parallel AlgorithmParallel Algorithm
nn Parallel ArchitectureParallel Architecture
nn Experimental Results Experimental Results
nn ConclusionConclusion

April, 2001 CODES 2001

Motivation - Technology Trends
nn Many of today’s chip designs contain 2 Many of today’s chip designs contain 2

processors, e.g., a DSP and a processors, e.g., a DSP and a microcontrollermicrocontroller
nn Future Future SoC SoC designs are likely to includedesigns are likely to include

uu 44--40 heterogeneous processors40 heterogeneous processors
uu 1010--50 on50 on--chip hardware resourceschip hardware resources

tt FFT, FFT, Viterbi Viterbi filter, wireless communicationfilter, wireless communication
uu Multithreaded software which dynamically requests Multithreaded software which dynamically requests

and uses the resourcesand uses the resources

April, 2001 CODES 2001

nn Ideally, programmers of such future Ideally, programmers of such future SoC SoC
designs would only write deadlockdesigns would only write deadlock--free codefree code

nn If not, we provide a way to detect deadlock If not, we provide a way to detect deadlock
very fastvery fast

nn User can write code to recover from User can write code to recover from
deadlockdeadlock

SoC Software

April, 2001 CODES 2001

Deadlock Detection Unit (DDU)

nn Small & scalable parallel hardware unitSmall & scalable parallel hardware unit
nn Multiple requestors & resourcesMultiple requestors & resources

uu In this paper, the only requestors are In this paper, the only requestors are
processors and the only resources processors and the only resources
are specialized hardware units like are specialized hardware units like
FFTFFT

April, 2001 CODES 2001

Overall Outline

nn Motivation Motivation -- Technology TrendsTechnology Trends
nn Background Background -- Deadlock DetectionDeadlock Detection
nn Parallel AlgorithmParallel Algorithm
nn Parallel ArchitectureParallel Architecture
nn Experimental Results Experimental Results
nn ConclusionConclusion

April, 2001 CODES 2001

Background:
Deadlock Condition
nn Properties of ResourcesProperties of Resources

uu Mutual Exclusion: AMutual Exclusion: Any resource can be held exclusively, ny resource can be held exclusively,
making it unavailable to other processorsmaking it unavailable to other processors

uu NonNon--preemption: Apreemption: Any resources can be released only by ny resources can be released only by
the processors holding the resource.the processors holding the resource.

nn Behavior of processorsBehavior of processors
uu Partial Allocation: Partial Allocation: a processor may hold some a processor may hold some

resources while the processor requests additional resources.resources while the processor requests additional resources.

uu Blocked Wait: Blocked Wait: processor must wait for unavailable processor must wait for unavailable
resources to become available.resources to become available.

Q1

P1

P2

Q2

April, 2001 CODES 2001

Previous Algorithms’ Run
Time
Generally the run time is O(m*n), where Generally the run time is O(m*n), where

m is the number of processors and n is m is the number of processors and n is
the number of resources.the number of resources.

nn Path Based, O(e), or O(ePath Based, O(e), or O(e≤≤m*n), where m*n), where
e is the set of edges.e is the set of edges.

nn Tree Based, O(m*n)Tree Based, O(m*n)
nn Matrix Based, O(m*n)Matrix Based, O(m*n)
nn Message Passing Based, O(m*n)Message Passing Based, O(m*n)

April, 2001 CODES 2001

Overall Outline

nn Motivation Motivation -- Technology TrendsTechnology Trends
nn Background Background -- Deadlock DetectionDeadlock Detection
nn Parallel AlgorithmParallel Algorithm
nn Parallel ArchitectureParallel Architecture
nn Experimental Results Experimental Results
nn ConclusionConclusion

April, 2001 CODES 2001

Example

request
grant

processor

resource

request

grant

processor

resource

April, 2001 CODES 2001

Example

Simple
path

Link
nodes

Sink
node

Source
node

Simple
path

Sink
edge

Source
edge

Link
edge

April, 2001 CODES 2001

Matrix Representation
nn Each row corresponds to a requestor (processor)Each row corresponds to a requestor (processor)

uu ppii represents requestor (processor) irepresents requestor (processor) i
nn Each column corresponds to a resourceEach column corresponds to a resource

uu qqjj represents resource jrepresents resource j
nn Entries in the matrixEntries in the matrix

uu r (r (rrijij) represents a request) represents a request
uu g (g (ggijij) represents a grant) represents a grant
uu 0 represents no action (neither request nor 0 represents no action (neither request nor

grant)grant)

April, 2001 CODES 2001

Properties

nn Proposed AlgorithmProposed Algorithm
uuMatrix BasedMatrix Based
uuModified Reduction TechniqueModified Reduction Technique
uuHandling multiple requests, and Handling multiple requests, and

grants at the same time.grants at the same time.
uuRequires simple bitRequires simple bit--wise wise booleanboolean

operations. operations.

April, 2001 CODES 2001

SoC Example

ggggrrp2(VSP)p2(VSP)
00rrggp1(DSP)p1(DSP)
q3(WI)q3(WI)q2(PCI)q2(PCI)q1(q1(IcPIcP))PP\\QQ

April, 2001 CODES 2001

Deadlock and Cycle Relation

ggggrrp2(VSP)p2(VSP)
00rrggp1(DSP)p1(DSP)
q3(WI)q3(WI)q2(PCI)q2(PCI)q1(q1(IcPIcP))PP\\QQ

DSP VSP

IcP PCI WI

• Deadlock ⇒ ∃ cycles
• Cycles ⇒ ∃ Deadlock
(As shown in the red)

April, 2001 CODES 2001

[] []









=

==









=

010110
001001

1001

0

c

cc

M

rg

ggr
rg

M

[] []









=

==









=

010110
001001

1001

0

c

cc

M

rg

ggr
rg

M

Matrix Representation

[] []









=

==









=

010110
001001

1001

0

c

cc

M

rg

ggr
rg

M























=









=








=

110
001

001
010

0
1

1
0

r

rr

M

rg

April, 2001 CODES 2001












=













⊕

⊕
=



















=



















=
0

0

11

11

1
1

1
1

110
001

001
010

rightrbor XORMM











=













⊕

⊕
=



















=



















=
0

0

11

11

1
1

1
1

110
001

001
010

rightrbor XORMM

Matrix Representation:
calculation of Mrbo and XORright

April, 2001 CODES 2001

[]
[] []100101111

011111

010110
001001

below

cbo

c

=⊕⊕⊕=
=









=

XOR

M

M

Matrix Representation:
calculation of Mcbo and XORbelow

April, 2001 CODES 2001

Result of first iteration

nn Based on result, we set all entries in Based on result, we set all entries in
column 3 to zero:column 3 to zero:

[]









=

=

0
0

100

right

below

XOR

XOR









=

0
0

gr
rg

M

April, 2001 CODES 2001

Multiple Iterations

nn Continuing in this way, we continue Continuing in this way, we continue
iterating until no more changesiterating until no more changes

nn When finished, if M is all zeros, we have When finished, if M is all zeros, we have
no deadlock; otherwise, we do have no deadlock; otherwise, we do have
deadlockdeadlock

nn This algorithm requires at most This algorithm requires at most
2*min(m,n) 2*min(m,n) iterationsiterations

April, 2001 CODES 2001

Overall Outline

nn Motivation Motivation -- Technology TrendsTechnology Trends
nn Background Background -- Deadlock DetectionDeadlock Detection
nn Parallel AlgorithmParallel Algorithm
nn Parallel ArchitectureParallel Architecture
nn Experimental Results Experimental Results
nn ConclusionConclusion

April, 2001 CODES 2001

3 Processors/3 Resources:
Architecture

April, 2001 CODES 2001

Overall Outline

nn Motivation Motivation -- Technology TrendsTechnology Trends
nn Background Background -- Deadlock DetectionDeadlock Detection
nn Parallel AlgorithmParallel Algorithm
nn Parallel ArchitectureParallel Architecture
nn Experimental ResultsExperimental Results
nn ConclusionConclusion

April, 2001 CODES 2001

Experiments
nn AssumptionAssumption

uu Software Cycle: Software Cycle: 83.3 MHz processor83.3 MHz processor

uu Hardware Cycle: Hardware Cycle:
tt Synthesized from gateSynthesized from gate--level descriptionlevel description
tt Clock as fast as critical path (e.g., 4.12 ns Clock as fast as critical path (e.g., 4.12 ns ⇒⇒ 242 MHz Clock)242 MHz Clock)
tt Clock same as CPU clock 83.3 MHz clock (12 ns cycle time) Clock same as CPU clock 83.3 MHz clock (12 ns cycle time)

nn SimulationSimulation
uu Previous Algorithm: Previous Algorithm: PowerPC 750 runs .c in Seamless CVEPowerPC 750 runs .c in Seamless CVE

uu Proposed Algorithm: Proposed Algorithm: Synopsys Synopsys VCS runs .vVCS runs .v

nn ~100 ~100 –– 1000 times faster1000 times faster
uu 99% run time reduction99% run time reduction

April, 2001 CODES 2001

Area and Delays of DDU

20620650504.124.1214142141422682268250x5050x50

36.636.610103.663.6662262216216210x1010x10

17.5717.57772.512.514554551021027x77x7

11.0511.05552.212.2126426473735x55x5

1.821.82220.910.9118618649492x32x3

Worst Worst
Case Case
CustomCustom
ClkClk (ns)(ns)

WorstWorst
CaseCase
(# steps)(# steps)

Delay/Delay/
StepStep
(ns)(ns)

AreaArea
AMI AMI
0.3u0.3u

Lines Lines
of of
VerilogVerilog

|P||P|
TimesTimes
|Q||Q|

600ns600ns

120ns120ns

84ns84ns

60ns60ns

24ns24ns

WorstWorst
CaseCase
83.3Mhz83.3Mhz
(ns)(ns)

April, 2001 CODES 2001

Hardware vs. Software Performance

N
um

be
r o

f C
yc

le
s

Number of Edges

April, 2001 CODES 2001

Example: Lookup Service

April, 2001 CODES 2001

Example SoC Architecture

April, 2001 CODES 2001

Event Sequence of the
Example

FFT is granted to MPC750FFT is granted to MPC750--2.2.e5e5t5t5

FFT is released by MPC750FFT is released by MPC750--11e4e4t4t4

MPC750MPC750--2 requests FFT, MPEG.2 requests FFT, MPEG.e3e3t3t3

MPC750MPC750--3 requests FFT, PCI; PCI is 3 requests FFT, PCI; PCI is
granted to MPC750granted to MPC750--3 immediately.3 immediately.

e2e2t2t2

MPC750MPC750--1 requests FFT, MPEG are 1 requests FFT, MPEG are
granted to MPC750granted to MPC750--1 immediately1 immediately

e1e1t1t1

EventsEventsEvent No.Event No.TimeTime

April, 2001 CODES 2001

Adjacency Matrices

April, 2001 CODES 2001

Sequence of Events

April, 2001 CODES 2001

Deadlock Detection Time and
Total Execution Time

Method of
Deadlock
Detection

Detection
Time ∆
(cycles)

t5 + ∆

Software 16,038 23,261

DDU 2 7,225

%9.68
261,23

7,225 - 23,261
Soverall ==

April, 2001 CODES 2001

Conclusion

nn Deadlock Detection UnitDeadlock Detection Unit
uuvery small area, even for 50x50very small area, even for 50x50
uu OOswsw(m*n) to(m*n) to OOhwhw(min(m,n)) speedup(min(m,n)) speedup
uu Linearly scalability in min(m,n)Linearly scalability in min(m,n)
uu Handle simultaneous requests/grantsHandle simultaneous requests/grants

nn DDU can be used by multiprocessor DDU can be used by multiprocessor
SoC sofware SoC sofware code to detect deadlock code to detect deadlock
quickly and then, for example, release quickly and then, for example, release
resources to get out of deadlockresources to get out of deadlock

April, 2001 CODES 2001

Future Work
nn Integrate DDU into an RTOSIntegrate DDU into an RTOS

uu Monitor DDU outputMonitor DDU output
tt DDU APIDDU API

uu Extend to handle multiple “blocked wait” Extend to handle multiple “blocked wait”
threads on one CPU: threads on one CPU: RTOS on each processor RTOS on each processor
aggregates requests which have the blocked wait property aggregates requests which have the blocked wait property
⇒⇒ each aggregate group is represented by a unique each aggregate group is represented by a unique
““processorprocessor”” rowrow

uu Try different recovery schemesTry different recovery schemes
uu Perhaps some hardware assist in recoveryPerhaps some hardware assist in recovery

