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Motivation - Technology Trends

= Many of today’s chip designs contain 2
processors, e.g., a DSP and a microcontroller

m Future SoC designs are likely to include
¢ 4-40 heterogeneous processors

+ 10-50 on-chip hardware resources
¢ FFT, Viterbl filter, wireless communication

+ Multithreaded software which dynamically requests
and uses the resources
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SoC Software

= |deally, programmers of such future SoC
designs would only write deadlock-free code

= |f not, we provide a way to detect deadlock
very fast

m User can write code to recover from
deadlock
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Deadlock Detection Unit (DDU)

m Small & scalable parallel hardware unit
= Multiple requestors & resources

¢ In this paper, the only requestors are
processors and the only resources
are specialized hardware units like
FFT
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Background: 5
Deadlock Condition

= Properties of Resources Q1 '

¢ Mutual Exclusion: Any resource can be held exclusively,
making it unavailable to other processors

2 Non-preemption: Any resources can be released only by

the processors holding the resource.

= Behavior of processors

¢ Partial Allocation: a processor may hold some
resources while the processor requests additional resources.

+ Blocked Wait: processor must wait for unavailable
resources to become available.
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Previous Algorithms’ Run
Time
Generally the run time i1s O(m*n), where

m Is the number of processors and n Is
the number of resources.

= Path Based, O(e), or O(eEm*n), where
e Is the set of edges.

= Tree Based, O(m*n)
= Matrix Based, O(m*n)
= Message Passing Based, O(m*n)
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Matrix Representation

m Each row corresponds to a requestor (processor)
¢ p; represents requestor (processor) |

m Each column corresponds to a resource
¢ (; represents resource |

m Entries in the matrix
o 1 (ry) represents a request
+ g (g;) represents a grant

+ O represents no action (neither request nor
grant)
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Properties

= Proposed Algorithm
+ Matrix Basecd
+ Modified Reduction Technique

+ Handling multiple requests, and
grants at the same time.

+ Requires simple bit-wise boolean
operations.
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SoC Example
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Deadlock and Cycle Relation

* Deadlock b $ cycles bSP - VSP

» Cyclespb $ Deadlock
(As shown in the red)
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Matrix Representation
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Matrix Representation:

calculation of M, and XOR
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Matrix Representation:
calculation of M_,, and XOR
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Result of first |terat|on

m Based on result, we set all entries In
column 3 to zero:
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Multiple Iterations

= Continuing In this way, we continue
iterating until no more changes

m When finished, if M Is all zeros, we have
no deadlock; otherwise, we do have
deadlock

= This algorithm requires at most
2*min(m,n) Iterations
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3 Processors/3 Resources:
Architecture
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Experiments

m Assumption
¢ Software Cycle: 83.3 MHz processor
+ Hardware Cycle:

+ Synthesized from gate-level description
¢+ Clock as fast as critical path (e.g., 4.12 ns b 242 MHz Clock)

+ Clock same as CPU clock 83.3 MHz clock (12 ns cycle time)
= Simulation

¢ Previous Algorithm: powerPc 750 runs .c in Seamless CVE
2 Proposed Algorithm: Synopsys VCS runs .v

m ~100 — 1000 times faster
¢ 99% run time reduction
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Area and Delays of DDU
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Hardware vs. Software Performance
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Example: Lookup Service




Example SoC Architecture




Event Sequence of the
Example

Time

Event No.

Events

t1

el

MPC750-1 requests FFT, MPEG are
granted to MPC750-1 immediately

t2

e2

MPC750-3 requests FFT, PCI; PCl is
granted to MPC750-3 immediately.

t3

e3

MPC750-2 requests FFT, MPEG.

t4

ed

FFT is released by MPC750-1

tS

e5

FET Is granted to MPC750-2.
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Adjacency Matrices
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Sequence of Events

8
MPCT50-1 | Computational Tine |

b
ftme(cycles)

HPC750-2 | Computational Time .

time{cyeles)

MPCT50-3 | Computational Tine

e

L4 = 5375 .
j timel eycles
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Deadlock Detection Time and
Total Execution Time

Method of | Detection
Deadlock TimeD t-+D
Detection (cycles)

L, =2320L- 1,225 _ g g0
23,261
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Conclusion

m Deadlock Detection Unit

¢ very small area, even for 50x50
¢ O_,(m*n) to Oy, (min(m,n)) speedup
¢ Linearly scalability in min(m,n)

+ Handle simultaneous requests/grants

= DDU can be used by multiprocessor
SoC sofware code to detect deadlock
quickly and then, for example, release
resources to get out of deadlock
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Future Work

m Integrate DDU into an RTOS

+ Monitor DDU output
+ DDU API
+ Extend to handle multiple “blocked walit”

threads on one CPU: RTOS on each processor
aggregates requests which have the blocked wait property

P each aggregate group IS represented by a unique
“processor” row

+ Try different recovery schemes
+ Perhaps some hardware assist in recovery
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