
© Georgia Tech, 2001. Confidential & Proprietary

Yamacraw Research Program in Embedded Software

Faculty : Vincent Mooney, Vijay Madisetti
Students : Tankut Akgul, Pramote Kuacharoen

A Debugger RTOS for
Embedded Systems

© Georgia Tech, 2001. Confidential & Proprietary

Outline

• Background and Motivation
• Approach
• Architecture
• Example
• Conclusion

© Georgia Tech, 2001. Confidential & Proprietary

Background and Motivation

microphone
camcorder

communication
link

RTOSRTOS
Application(s)Application(s)

DebuggerDebugger

• More memory at the target side

• Low level of target system visibility

© Georgia Tech, 2001. Confidential & Proprietary

Background and Motivation

microphone
camcorder

communication
link

• Less memory at the target side

• High level of target system visibility

RTOSRTOS
Application(s)Application(s)

DebuggerDebugger

© Georgia Tech, 2001. Confidential & Proprietary

Background and Motivation
ROM (Debug) MonitorROM (Debug) Monitor

Edit, compile, link

Debugger
(user interface)

Host Target

Serial
I/O

CPU

Executable
code in RAM

Debug Monitor in ROM

Peripherals

Serial
cable

Cons:

• Hard to remove the ROM monitor from the
final product

• Fixed monitor code once burned into ROM

Pros:

• ROM monitor has access to target system
internals

© Georgia Tech, 2001. Confidential & Proprietary

Background and Motivation
InIn--CircuitCircuit--Emulator (ICE)Emulator (ICE)

Edit, compile, link

Downloader

Host Target

ICE
pod

Peripherals

Parallel
cable

Cons:

• Expensive

• Lags processor production time

• Does not work well with high speed signals

• Impractical to use with highly embedded
cores

Pros:

• Real-time event detection, real-time tracing

Debugger ICE

Executable
code in
RAM

© Georgia Tech, 2001. Confidential & Proprietary

Background and Motivation
JTAG/Background Debug Mode (BDM)JTAG/Background Debug Mode (BDM)

Edit, compile, link

Downloader

Host

Parallel
cable

Cons:

• Requires on-chip hardware support

• Not suitable for real-time debugging

Pros:

• Fair target visibility with small number
of external processor connections

• No consumption of target resources

Debugger
JTAG/
BDM

Interface

Target

JTAG/BDM
connection

CPU
Executable

code in RAM

Peripherals
Serial
cable

© Georgia Tech, 2001. Confidential & Proprietary

• User can set at most 5 watchpoints
in software. Whenever these
watchpoints are reached, external
pins are asserted.

• The processor, if programmed,
goes into the debug mode on
exceptions, and stops execution.
Then, a remote debugger can send
commands to the processor
through the processor’s external
pins.

Example 1: BDM with MPC860

© Georgia Tech, 2001. Confidential & Proprietary

…

If (x>0) {
! sum = sum + x;

printf(“x is positive”);
….
}
else {

sum = sum – x;
printf(“x is negative”);
….
}

Breakpoint
inserted

• Branch prediction hardware predicts “x>0”,

• Pre-fetcher fetches instruction here,

• Traditional host debugger monitors address of

this instruction on external signals, breaks

there,

• Prediction is wrong, branch not taken ⇒ trace

is incorrect !

• On-chip debugger has full knowledge of

internal signals, this misbehavior

never happens!

Example 2: Incorrect Program Trace

© Georgia Tech, 2001. Confidential & Proprietary

Approach

Just-in-time Debugging
• Debugger software is a loadable module of the RTOS
• Buggy code runs on the processor until an exception condition

or an algorithmic error occurs.
• Debugger is dynamically loaded by the exception handler.

Automatic Error Detection
• Algorithmic errors

– E.g., functional errors, timing errors,
synchronization errors.

• Hardware Exceptions

– E.g., alignment errors, software emulation
error.

© Georgia Tech, 2001. Confidential & Proprietary

Error Monitor
– Always resident inside RTOS
– Responsible for the detection of errors and the

instantiation of the debugger part

Debugger Module
– Responsible for classifying, and locating errors in the

program
– Provides debugging features such as memory dump,

and register display

Approach

© Georgia Tech, 2001. Confidential & Proprietary

DetectionDetection of of
erroneous behaviorerroneous behavior

Error Error classificationclassification
and error and error locationlocation

ReRe--compilation compilation
without the without the

debugger code debugger code

Debugging Steps:

• Error detection

• Dynamic instantiation of
the debugger module

• Error classification

• Error location

• Code modification

• Code re-compilation

Error-free
code

Load debugger here!

Approach

© Georgia Tech, 2001. Confidential & Proprietary

Future Improvements

• Current features of the debugger module:
– Error classification
– Error location for immediately locatable errors
– Display of register values

• Future improvements:
– Incremental instantiation of additional features
– Breakpointing
– Source line stepping
– On the fly variable query and modification
– Profiling

© Georgia Tech, 2001. Confidential & Proprietary

Architecture

Modules
Core

Memory

Time

Comm.

Task

Debugger

Scheduler

Loader

Core Module

Executable code

Module Variables

System APIs

Core

Time

Task

Scheduler

Memory

Communication

Debugger

Loader
Te

xt
D

at
a

The Georgia Tech Dynamic RTOS

Reference:
P. Kuacharoen, T. Akgul, V. J. Mooney, V. K. Madisetti,
“Adaptability, Extensibility, and Flexibility in RealAdaptability, Extensibility, and Flexibility in Real--Time Time
Operating SystemsOperating Systems”, Euromicro Symposium on Digital
System Design, September 2001.

© Georgia Tech, 2001. Confidential & Proprietary

Architecture

communication
link

Processor(s)

Error Monitor

Debugger Module*

Other RTOS Modules*

Application(s)

RTOSRTOS

GUI
* Dynamically loadable

© Georgia Tech, 2001. Confidential & Proprietary

Module Table

Global Variable Table
Text Section

Data Section

Local Variables

Global Variable
pointers

0xFF000000
Debugger Module

2

3

1 Load debugger
module into memory

……
0xFA000000Scheduler
0xFF000000Debugger

AddressFunction name

……
0xFFF00B00TCB_list
0xFF00A000cur_task_ID

AddressGlobal var.

init_module_debugger() { init_module_debugger() {

2 , 3 2 , 3

load_module_debugger() { load_module_debugger() {

11
}}

}}

Architecture

© Georgia Tech, 2001. Confidential & Proprietary

Host

Debugger module

Example
Target code

Error monitor

Global Var. Address
Global Variable Table

cur_task_ID 0x581000C0
TCB_list 0x581000D4

… …

Function name Address
Module Table

Scheduler 0x7C00000
… …

Debugger

Debugger module
0x7FA00000

© Georgia Tech, 2001. Confidential & Proprietary

Target code

Error monitor

Host

Debugger module Debugger module

Global Var. Address
Global Variable Table

cur_task_ID 0x581000C0
TCB_list 0x581000D4

… …

Example
Function name Address

Module Table

Scheduler 0x7C00000
… …

0x7FA0000Debugger

0x7FA00000

© Georgia Tech, 2001. Confidential & Proprietary

Target code

Error monitor

Global Var. Address
Global Variable Table

cur_task_ID 0x581000C0
TCB_list 0x581000D4

… …

Host

Debugger module

Example
Function name Address

Module Table

Scheduler 0x7C00000
… …

0x7FA0000Debugger

Debugger module

© Georgia Tech, 2001. Confidential & Proprietary

Example Application

int find_ratio(v1, v2)
{

v1 = (int) get_voltage(loc1);

v2 = (int) get_voltage(loc2);

return (v1/v2);
}

• Repeatedly gets two floating point voltage samples from two
different locations in memory

• Converts collected voltage samples into integer values

• Calculates the ratio of the samples

Creates divide-by-zero
algorithmic error* when v2 = 0

* MPC860 does not have an exception for the
integer divide-by-zero error.

© Georgia Tech, 2001. Confidential & Proprietary

A Snapshot of the GUI

© Georgia Tech, 2001. Confidential & Proprietary

• Efficient Memory Usage

• Capability for detecting algorithmic errors

• No extra hardware for debugging

• Correct debugging in a highly coupled and
parallel environment

Conclusion

