
Assembly Instruction Level Reverse
Execution for Debugging

PhD Dissertation Defense
by

Tankut Akgul

Advisor: Vincent J. Mooney

School of Electrical and Computer Engineering
Georgia Institute of Technology

March 2004

2

Outline
Background

Reverse Execution
Definition
Previous Work

Reverse Execution Methodology

Program Slicing
Definition
Previous Work

Program Slicing Methodology

Experimental Results

3

Background

Debugging is a repetitive process!

Detect an
error

Restart the
program

Determine
the bug

location(s)

Error-free
program

Remove the
bug(s) and

recompile the
program

Start the
program

4

Outline
Background

Reverse Execution
Definition
Previous Work

Reverse Execution Methodology

Program Slicing
Definition
Previous Work

Program Slicing Methodology

Experimental Results

5

Definition of Reverse Execution

Reverse execution: Taking a program T from its
current state Si to a previous state Sj

Source code level reverse execution: Reverse
execution where Sj can be as early as one source
code statement before state Si

Instruction level reverse execution: Reverse
execution where Sj can be as early as one
assembly instruction before state Si

6

Previous Work

Debugging
Optimistic Simulations
Database Applications
Interactive Systems

Editors
Program development environments

7

Previous Work in Reverse Execution

Restore earlier state
Periodic checkpointing
Incremental checkpointing

Regenerate part of earlier state
Source transformation

Build a reversible processor with reversible
circuit elements (Pendulum)

8

Previous Work in Reverse Execution

12KB 12KB+ = 60KBMemory usage for state saving: 12KB + 12KB + + 12KB

8KB 4KB+ = 24KBMemory usage for state saving: 4KB + 4KB + + 4KB

Periodic Periodic checkpointingcheckpointing::

Incremental Incremental checkpointingcheckpointing::

= 4KB

9

Previous Work in Reverse Execution

Sample () {
int x, y;
y = 0;
x += 10;
if (x > 15)

y++;
else

y--;
}

Source Transformation:Source Transformation:

Source code

Sample () {
int x, y;
save y;
y = 0;
x += 10;
if (x > 15) {

b = 0;
y++;

} else {
b = 1;
y--;

}
}

Transformed code

Sample_rev () {
int x, y;
if (b == 0)

y--;
else

y++;
x -= 10;
restore y;

}
Reverse code

State saved for each destructive operation

Destructive operation: An operation whose target operand is different than its source operands

C. Carothers, K. Perumalla and R. Fujimoto, “Efficient Optimistic Parallel Simulations using
Reverse Computation,” in Proceedings of ACM/IEEE/SCS Workshop on Parallel and Distributed
Simulation (PADS), Atlanta, USA, May 1999.

10

Previous Work in Reverse Execution

Heavy use of state saving

State saving = memory and time
overheads during forward execution

No direct instruction level reverse
execution support

11

Outline
Background

Reverse Execution
Definition
Previous Work

Reverse Execution Methodology

Program Slicing
Definition
Previous Work

Program Slicing Methodology

Experimental Results

12

Reverse Execution Methodology

Assumptions:Assumptions:
State that cannot be modified directly does not
include debugging information

E.g., condition status register

Physical memory is treated as a uniform entity
Exact physical memory state is not preserved
E.g., a value not in cache can be brought into cache after
recovery

Sequential execution model
Indirect calls are made to well-defined target points

13

Reverse Execution Methodology
We define the state of a processor as follows:

S = (PC , M' , R')
PC : program counter
M' : directly modified memory values
R' : directly modified register values

In order to reverse execute a program, do the following:

Construct a reverse program RT for an input program T
Recover M' and R' by executing RT in place of T
Recover the program counter value by using the
correspondence between T and RT

14

Reverse Execution Methodology

Reverse Code Generation (RCG) steps:

1. Divide the original program into program partitions
2. Generate the reverse of the instructions. The reverse of

an instruction is called a Reverse Instruction Group
(RIG)

3. Combine the RIGs
3.a Combine the RIGs to generate the reverse of each

basic block (RBB)
3.b Combine the RBBs to generate the reverse of each

partition
3.c Combine the reverse partitions to generate the

reverse of whole program

15

Reverse Execution Methodology

Partition the input program while constructing a call graph

Read an instruction α from current partition

Generate a RIG for α

Build a modified value graph for current partition

end of BB?

end of partition?

end of program?

Connect the RBB to reverse program

Connect the reverse partition to reverse
program, go to next partition

Y
N

YN

end
Y

N

start

16

Step 1: Program Partitioning

Partitions are regions of code delimited by “function
call” or “indirect branch” instructions that may exist
within the original code

e.g., in PowerPC instruction set:
bl : function call instruction
blr : branch to link register instruction (indirect)

17

Step1: Program Partitioning
first partition

of main

second partition
of main

single partition
of foo

main:
li r3,0x5
bl foo
addi r12, r12, 1
blr

foo:
li r11, 3
ori r12, r3, 15
divw r10, r3, r11
cmpwi r10, 100
bg L1
sub r11, r3, r12
b L2

L1: addi r12, r10, 1
sub r11, r12, r3

L2: mullw r12, r11, r10
blr

main:
li r3,0x5
bl foo
addi r12, r12, 1
blr

foo:
li r11, 3
ori r12, r3, 15
divw r10, r3, r11
cmpwi r10, 100
bg L1
sub r11, r3, r12
b L2

L1: addi r12, r10, 1
sub r11, r12, r3

L2: mullw r12, r11, r10
blr

18

Methodology (Continued)

Reverse Code Generation (RCG) steps:

1. Divide the program into program partitions (single entry-
single exit regions).

2. Generate the reverse of the instructions. The reverse of
an instruction is called a Reverse Instruction Group
(RIG)

3. Combine the RIGs
3.a Combine the RIGs to generate the reverse of each

basic block (RBB)
3.b Combine the RBBs to generate the reverse of each

partition
3.c Combine the reverse partitions to generate the

reverse of whole program

19

Step 2: RIG Generation

Three techniques to generate a RIG:

1. Re-define technique

2. Extract-from-use technique

3. State saving technique

20

start

Step 2: RIG Generation (Cont.)

exit

r1 = r2 + r3

r4 = r1 + r3

r1 = r2 - 4

r1 = r2

r2 < 0

PP

Find the definitions of r1 reaching PP
Recover r1 by selectively re-executing
the found definitions or by selectively
extracting the found definitions out of
later uses of those definitions

α

false true

if r2 < 0
r1 = r4 – r3 r1 = r2

r1 = r2 + r3

else
RIG for α : or

Extract-from-use Re-define

21

start

Step2: RIG Generation (Cont.)

r1
3 = Φ(r1

1,r1
2)

exit

Rename Values
Generate a directed graph called
modified value graph (MVG)

r1 = r2 + r3

r4 = r1 + r3

r1 = r2 - 4

r1 = r2

r2 < 0

PP

PP''

Find the definition of r1 reaching PP

r1
1

r2
0 r3

0

r1
2

r4
0

r4
1

r1
3

r1
0

r1
4

r 2
0 < 0 r2 0 ≥ 0Φ

Recover r1 using available nodes
at PP''

r1 = r4 – r3

if r2 < 0
r1 = r2

r1 = r2 + r3

else
RIG for α : or

α

r1
1 r1

2

r1
4

r4
1

Select
operator

false true

+

+

22

Methodology (Continued)

Three steps to generate a complete reverse program:

1. Divide the program into program partitions (single entry-
single exit regions).

2. Generate the reverse of the instructions. The reverse of
an instruction is called a Reverse Instruction Group
(RIG)

3. Combine the RIGs
3.a Combine the RIGs to generate the reverse of each

basic block (RBB)
3.b Combine the RBBs to generate the reverse of each

partition
3.c Combine the reverse partitions to generate the

reverse of whole program

23

Step 3.a: Constructing the RBBs

i1
i2

i3
i4

i5
i6
i7

BB1

BB2 BB3

BB4

RIG2RBB1

RIG1

RIG4RBB2

RIG3

RIG7RBB3

RIG6

RIG8RBB4

RIG5

Bottom-up placement order within BBs

i8

24

Step 3.b: Combining the RBBs

start

exit

α2

α3
α4

α5
α6

α8 α7

α9

?

?

?
α1BB1

BB2 BB3

BB4

BB: Basic Block

BB6

start

exit

RIG9
RBB6

RBB5 RBB4

RBB3
RBB2

RBB1

RIG7 RIG8

RIG4
RIG3

RIG6
RIG5

RIG2
RIG1

cb

cb

cb

RBB: Reverse of a BB
cb: Conditional branch

BB5

25

Step 3.c: Combining the Reverse
Partitions

m1 g1

h

g2m2

end

start

A0

A0

A2
A2

A2

A4

A3

A3

A1

mm11

mm22

gg11

gg22

hh

A0

A2

A1

A3

A4

main:
cmp r1, r2
bl g; // call g

…
blr // return

g:
…
mtlr r0 // set a func. ptr.
bclrl // call by the func. ptr.

…
blr // return

h:
…
blr // return

Push addresses on the
dynamically taken edges into
stack
Pop the addresses from stack
during reverse execution and
branch to reverses of popped
addresses

A2A2

26

Recovering the Program Counter

Input Input
ProgramProgram

0x0 0x4000

0x4 0x3FFC

0x8 0x3FE0

… …

Input Input
instruction instruction

addressaddress

RIG RIG
addressaddress

Designates the entry point into
the reverse program for every
instruction in the input program

Program being
debugged

Reverse of the
input program

RCG
algorithm

ReverseReverse
ProgramProgram

InversionInversion
TableTable

27

Complexity
N : number of nodes in an MVG ≅ # of

assembly instructions in a code
M : average degree of a node (# of

neighbors)
K : maximum number of repetitive

applications of re-define and
extract-from-use techniques allowed

M is independent of total code size for
fixed partition size

Complexity = O(N×MK)

On a 1 GHz CPU, 1 iteration ≅ 1 nsec

N = 1,000,000, M = 10, K = 3 1 sec

Byte Recover (Node n)
{

if (n.available == true)
return true;

∀m ∈ children(n) do {
stat = Recover(m);

if stat != available
break;

}
∀m ∈ parents(n) do {

stat = Recover(m);
if (stat == available) {

∀z ∈ siblings(n) do {
stat = Recover(z);
if (stat != available)

break;
}

}
if (stat == available)

break;
}
Write_RIG();

}

28

Outline
Background

Reverse Execution
Definition
Previous Work

Reverse Execution Methodology

Program Slicing
Definition
Previous Work

Program Slicing Methodology

Experimental Results

29

Program Slicing
Static SliceStatic Slice: A set of program statements that
may influence a variable V at statement S.

C = (V, S) is a static slicing criterion.

Dynamic SliceDynamic Slice: A set of program statements
that influence a variable V at an execution
instance q of statement S given a set of
program inputs X.

C = (X, V, Sq) is a dynamic slicing criterion.

30

Program Slicing
Two ways to influence a variable:

Data dependency
y = z;
x = y + 1;
x is data dependent on y and z

Control dependency
if (y < 0)

x = 1;
x is control dependent on y

A slice is a set of all statements that compute
dependencies of a variable

31

Program Slicing
Pass = 0 ;
Fail = 0 ;
Count = 0 ;
while (!eof()) {

TotalMarks=0;
scanf("%d",Marks);
if (Marks >= 40)

Pass = Pass + 1;
if (Marks < 40)

Fail = Fail + 1;
Count = Count + 1;
TotalMarks = TotalMarks+Marks ;

}
average = TotalMarks/Count;
/* This is the point of interest */
printf("The average is %d\n",average) ;
PassRate = Pass/Count*100 ;
printf(“Pass rate is %d\n",PassRate) ;

while (!eof()) {
TotalMarks=0;
scanf("%d",Marks);
Count = Count + 1;
TotalMarks = TotalMarks+Marks;

}
average = TotalMarks/Count;
printf("The average is %d\n",average) ;

Original ProgramOriginal Program

Slice Slice w.r.tw.r.t. “. “averageaverage””

Example is taken from Prof. Mark Harman’s webpage at http://www.brunel.ac.uk/~csstmmh2/exe1.html

32

Previous Work in Program Slicing
Static Slicing (Weiser)

Control flow graph analysis
No runtime information

Static Slicing (Ottenstein et al.)
Program dependency graph analysis
No runtime information

Dynamic Slicing (Korel and Laski)
Control flow graph analysis
Program execution trajectory

Dynamic Slicing (Agrawal et al.)
Dynamic dependence graph (DDG) analysis
Program execution trajectory

33

Outline
Background

Reverse Execution
Definition
Previous Work

Reverse Execution Methodology

Program Slicing
Definition
Previous Work

Program Slicing Methodology

Experimental Results

34

RCG with Slicing (RCGS)

Reverse
execution
along a

dynamic slice

Dynamic
slicing
table

Global MVG

Reduced
reverse
program

Input
program

Reverse
program

Green arrows indicate the actions performed by the debugger

Orange arrows indicate the base static analysis performed only once per program
Blue arrows indicate the extended static analysis performed for each dynamic slice

Full-scale
reverse
execution

Forward
execution

local MVGs

35

Contributions of RCGS

Reverse execution along a dynamic slice
Faster reverse execution

No complete execution trajectory is required
Less runtime memory usage

Not only reveals dynamic slice instructions but
also obtains runtime values of variables

More efficient debugging

36

Reverse Execution Along a Dynamic Slice

stw %r0,0x4(%r1)
li %r8,0x64
li %r10,0x1
ori %r12,%r10,0x0
li %r11,0x1

cmpw %r8,%r11
blt- 0x1000c0

add %r9,%r12,%r10
ori %r10,%r12,0x0
ori %r12,%r9,0x0
addi %r11,%r11,0x1
b 0x1000a4

bclr 0x14,0x0

Determine data dependencies
statically

Determine control flow
dynamically

Merge static information with
dynamic information to reverse
execute along the dynamic slice

37

Generation of a Reduced Reverse Program

38

Experimentation Platform

Background Debug
Mode (BDM) Interface

PC
Windows 2000

MBX860
MPC860 processor

4MB DRAM, 2MB Flash
RTC, four 16-bit timers, watchdog

39

Comparisons

Reverse Execution with Incremental
State Saving (ISS)

Save state before each instruction
Reverse Execution with Incremental
State Saving for Destructive
Instructions (ISSDI)

Save state before each destructive
instruction

Reverse Execution with RCG

40

Benchmarks

4636LZW

6908ADPCM encoder

3308Matrix multiply

3104Selection sort

Executable object size (bytes)Executable object size (bytes)BenchmarkBenchmark

ADPCM: Adaptive Differential Pulse Code Modulation
LZW: Lempel Ziv Welch

41

Benchmarks

194,451,339LZW (16KB input data)
16,063,096LZW (4KB input data)

1,380,413LZW (1KB input data)

1,496,649ADPCM (128KB input data)
751,280ADPCM (64KB input data)
378,294ADPCM (32KB input data)

457,183,831Matrix multiply (400x400)
472,044Matrix multiply (40x40)

650Matrix multiply (4x4)

198,539,130Selection sort (10000 inputs)
2,000,202Selection sort (1000 inputs)

21,187Selection sort (100 inputs)

Raw Execution Time Raw Execution Time
((decrementerdecrementer ticks)ticks)BenchmarkBenchmark

1 tick = 0.4 microseconds on MBX860

42

Experiment 1

Instrument each benchmark with state
saving instructions at appropriate points
for ISS, ISSDI and RCG
Forward execute each instrumented
benchmark from the beginning until the
end
Measure forward execution times

43

Instrumented Forward Execution Time

ISS: Incremental State Saving, ISSDI: Incremental State Saving for Destructive Instructions

1.31X1.53X288077045378614957439424024LZW (16KB input data)

1.34X1.52X238132303194283836319691LZW (4KB input data)

1.31X1.52X205465726992873126206LZW (1KB input data)

1.20X1.31X246423229505623223166ADPCM (128KB input data)

1.20X1.31X123211014752761611572ADPCM (64KB input data)

1.20X1.31X616101737720805972ADPCM (32KB input data)

1.90X2.32X4586916378705399811064415269Matrix multiply (400x400)

1.88X2.29X4762438957031092872Matrix multiply (40x40)

1.70X2.02X70811971432Matrix multiply (4x4)

1.27X1.40X280677488356208073394063091Selection sort (10000 inputs)

1.27X1.40X284102935952133979802Selection sort (1000 inputs)

1.24X1.38X311133849642984Selection sort (100 inputs)

ISSDI/ISSDI/
RCGRCG

ISS/ISS/
RCGRCGRCGRCGISSDIISSDIISSISSBenchmarkBenchmark

44

Forward Execution Time Overhead
98.4898.97102.88

79.4181.70 79.74

41.3742.0446.90

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Selection Sort
(100)

Selection Sort
(1000)

Selection Sort
(10000)

ISS

ISSDI

RCG

%
 O

ve
rh

ea
d

120.31
131.52 132.82

84.15
90.4189.75

0.330.898.92
0.00

20.00
40.00
60.00
80.00

100.00
120.00
140.00

Matrix Multiply
(4x4)

Matrix Multiply
(40x40)

Matrix Multiply
(400x400)

ISS

ISSDI

RCG

126.47 126.11 125.98

95.54 94.7198.86

48.84 48.1548.25

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

LZW (1KB) LZW (4KB) LZW (16KB)

ISS

ISSDI

RCG

115.36114.51113.05

96.37 97.1495.01

64.00 64.6562.86

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00

ADPCM
(32KB)

ADPCM
(64KB)

ADPCM
(128KB)

ISS

ISSDI

RCG

%
 O

ve
rh

ea
d

%
 O

ve
rh

ea
d

%
 O

ve
rh

ea
d

instrumented execution time – raw execution time
raw execution time

Overhead =

45

Experiment 2

Reverse execute each benchmark from
the end until the beginning (by
executing the reverse versions)

Measure reverse execution times

46

Reverse Execution Time
ISSDI/ISSDI/
RCGRCG

ISS/ISS/
RCGRCGRCGRCGISSDIISSDIISSISSBenchmarkBenchmark

0.74X0.78X367192713728724Selection sort (100 inputs)

--3516414--Selection sort (1000 inputs)

-----Selection sort (10000 inputs)

0.60X0.66X1325784880Matrix multiply (4x4)

0.53X0.61X1088827578556660189Matrix multiply (40x40)

--1070219421--Matrix multiply (400x400)

0.82X0.86X765036628958656702ADPCM (32KB input data)

0.82X-15288071257770-ADPCM (64KB input data)

--3057176--ADPCM (128KB input data)

--2619106--LZW (1KB input data)

--30596864--LZW (4KB input data)

--371045637--LZW (16KB input data)

47

Experiment 3

Forward execute each instrumented
benchmark from the beginning until the
end

Measure memory usage for state
saving

48

Memory Usage for State Saving

354X589X1331471140784336LZW (16KB input data)

112X185X3513916364970LZW (4KB input data)

35X57X98.434255630LZW (1KB input data)

2X2.5X246447676175ADPCM (128KB input data)

2X2.5X123223843088ADPCM (64KB input data)

2X2.5X61611921544ADPCM (32KB input data)

1404X2206X125017550062756883Matrix multiply (400x400)

143X224X12.618012820Matrix multiply (40x40)

14X21X0.172.353.6Matrix multiply (4x4)

55X82X7237397913593389Selection sort (10000 inputs)

27X40X15140656032Selection sort (1000 inputs)

6.3X9X7.546.968.2Selection sort (100 inputs)

ISSDI /
RCG

ISS /
RCG

RCG
(KB)

ISSDI
(KB)

ISS
(KB)

49

Experiment 4

Forward execute original 400x400
matrix multiply from the beginning to
various intermediate points and
measure the execution times
Reverse execute 400x400 matrix
multiply using RCG from the end to
various intermediate points and
measure reverse execution times

50

Program Re-execute Approach vs. RCG

0

100

200

300

400

500

0 100 200 300 400

Outermost loop iteration count

Ti
m

e
(s

ec
on

ds
)

Forward execution Reverse execution via RCG

400x400 matrix multiply
starting point
for reverse
execution

starting point
for forward
execution

51

Experiment 5

Extract three slices for each benchmark
Reverse execute each benchmark fully
starting from end of each slice until
beginning of each slice
Reverse execute each benchmark
along computed slices only
Measure the reverse execution times

52

Full-scale Reverse Execution vs.
Reverse Execution Along a Slice

356.5

189.5

522.5

12 10 7
0

100
200
300
400
500
600

slice1 slice2 slice3

tim
e

(m
ic

ro
se

co
nd

s)

141.5

83

202.5

40.5
72

106

0

50

100

150

200

250

slice1 slice2 slice3

tim
e

(m
ic

ro
se

co
nd

s)

1.44
1.13

0.831.1 0.9
0.6

0.0

0.5

1.0

1.5

2.0

slice1 slice2 slice3

tim
e

(s
ec

on
ds

)

1.96

54.22

114.34

0.7
19.8

40.5

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0

slice1 slice2 slice3

tim
e

(s
ec

on
ds

)

Selection Sort (10 inputs) Matrix Multiply (4x4)

ADPCM Encoder
(128KB input)

LZW
(128KB input)

full reverse execution reverse execution along a dynamic slice

53

Full-scale Reverse Execution vs.
Reverse Execution Along a Slice

3.56E+02

2.72E+05

2.68E+08

1.41E+02
1.63E+019.67E+00

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09

4x4 multiply 40x40 multiply 400x400 multiply

tim
e

(m
ic

ro
se

co
nd

s)

full reverse execution reverse execution along the dynamic slice

1.42E+02

1.33E+04

1.30E+06 6.54E+05

6.71E+03

7.28E+01

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07

10 integers 100 integers 1000 integerstim
e

(m
ic

ro
se

co
nd

s)

Matrix Multiply

Selection Sort

54

Experiment 6

Extract three slices for each benchmark
Measure average runtime memory
requirement for reverse execution
along three slices with RCGS
Measure average runtime memory
requirement for reverse execution
along three slices with ISS plus
execution trajectory (ET) approach

55

Runtime Memory Requirements

1984

140

140

0

500

1000

1500

2000

2500

RCGS ISS+ET

by
te

s

680

113

230

0

200

400

600

800

1000

RCGS ISS+ET

by
te

s

5542

870

1694

0
1000
2000
3000
4000
5000
6000
7000

RCGS ISS+ET

ki
lo

by
te

s

94

0.1

1.0

10.0

100.0

1000.0

RCGS ISS+ET
m

eg
ab

yt
es

235
0.6

Selection Sort (10 inputs) Matrix Multiply (4x4)

ADPCM Encoder
(128KB input)

LZW
(128KB input)

RCGS: RCG with Slicing ET: Execution Trajectory

RCGS memory usage ISS memory usage ET memory usage

56

Reverse Debugger

Execute forward Step forward Execute backward Step backward

Memory
window

Breakpoint
window

Register
window

Source
window

57

Reverse Debugger

19Number of files

~7000Number of C lines

Reverse Debugger Code SpecsReverse Debugger Code Specs

58

Conclusion

Reduced debugging time with localized re-
executions
Very low time and memory overheads in
forward execution by using reverse code
Reverse execution up to an assembly
instruction level granularity
Dynamic slicing support to speed up
reverse execution without execution
trajectory requirement

59

Publications
T. Akgul, V. J. Mooney and S. Pande, “A Fast Assembly Level Reverse
Execution Method via Dynamic Slicing,” accepted for publication in
Proceedings of the 26th International Conference on Software Engineering
(ICSE'04), May 2004.
T. Akgul and V. J. Mooney, “Assembly Instruction Level Reverse Execution for
Debugging,” submitted to Transactions on Software Engineering and
Methodology (TOSEM) on December 2002, accepted with minor revision.
T. Akgul and V. J. Mooney, “Instruction-level Reverse Execution for
Debugging,” Proceedings of the Workshop on Program Analysis for Software
Tools and Engineering (PASTE'02), pp. 18-25, November 2002.
T. Akgul and V. J. Mooney, “Instruction-level Reverse Execution for
Debugging,” Technical Report GIT-CC-02-49, September 2002.
http://codesign.ece.gatech.edu/publications/index.htm
T. Akgul, P. Kuacharoen, V. Mooney and V. Madisetti, "A Debugger RTOS for
Embedded Systems," Proceedings of the 27th EUROMICRO Conference
(EUROMICRO'01), pp. 264-269, September 2001.
P. Kuacharoen, T. Akgul, V. Mooney and V. Madisetti, "Adaptability,
Extensibility, and Flexibility in Real-Time Operating Systems," Proceedings of
the EUROMICRO Symposium on Digital Systems Design (EUROMICRO'01),
pp. 400-405, September 2001.
T. Akgul, P. Kuacharoen, V. J. Mooney and V. K. Madisetti, “A Debugger
Operating System for Embedded Systems,'' U.S. Patent Application, no.
20030074650, April 17, 2003.
P. Kuacharoen, T. Akgul, V. J. Mooney and V. K. Madisetti, “A Dynamic
Operating System,'' U.S. Patent Application, no. 20030074487, April 17, 2003.

60

Thank you!Thank you!

