FINAL EXAMINATION - SOLUTIONS

(Average Score $=58 / 100$)
Problem 1-(20 points - This problem must be attempted)
The circuit shown is to be an oscillator. The transistors are identical with a $g_{m}=1 \mathrm{mS}$ and $r_{d s}=\infty$. (a.) Should the switch at the gate of M1 be connected to point A or B in order to oscillate? (b.) Find the frequency of oscillation in Hertz and the value of $g_{m} R$ necessary for oscillation.

Solution

(a.) Assuming the switch is connected to B , the gain from the gate of M 1 to $V_{\text {out }}$ can be expressed as,

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{g 1}}=T(s)=\left(\frac{-g_{m} R}{s R C+1}\right)^{3}=\frac{\left(-g_{m} R\right)^{3}}{(s R C)^{3}+3 s^{2} R^{2} C^{2}+3 s R C+1} \\
& T(j \omega)=\frac{-\left(g_{m} R\right)^{3}}{\left[1-3 \omega^{2} R^{2} C^{2}\right]+j \omega R C\left[3-3 \omega^{2} R^{2} C^{2}\right]}=1+\mathrm{j} 0
\end{aligned}
$$

(b.) From the above equation, we get,

$$
\omega_{o s c}=\frac{\sqrt{3}}{R C}=\frac{1.732}{10 \times 10^{3} \cdot 1 \times 10^{-9}}=173.2 \mathrm{Krad} / \mathrm{sec} \quad \rightarrow \quad \underline{\underline{f o s c}} \underline{\underline{\underline{o}}} \underline{\underline{27.57 \mathrm{kHz}}}
$$

Also, from the above equation, we get

$$
\begin{array}{ll}
& -\left(g_{m} R\right)^{3}=1-3 \omega^{2} R^{2} C^{2}=1-9=-8 \\
\therefore \quad & \left(g_{m} R\right)^{3}=8 \quad \rightarrow \quad \underline{\underline{g}} \underline{\underline{m}} \underline{\underline{R=8^{0.33}}=2}
\end{array}
$$

We see that the switch should be connected to B. Otherwise, $g_{m} R$ would be negative.

Problem 2 - (20 points - This problem must be attempted)

The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{d s}=$ ∞. (a.) Where should the switch be connected for negative feedback? (b.) Use the method of feedback analysis to find v_{2} / v_{1}, $R_{\text {in }}=v_{1} / i_{1}$, and $R_{\text {out }}=v_{2} / i_{2}$.

Solution

(a.) A quick check of the ac voltage changes around the loop show that the switch should be connected to A.
(b.) This feedback circuit is series-series. The units of A are A / V and the units of β are V/A.

$$
\beta=z_{12 \mathrm{f}}=\frac{v_{1 \mathrm{f}}}{i_{2 \mathrm{f}} i_{i_{\mathrm{f}}}=0=R_{3}=1 \mathrm{k} \Omega, ~ \text {. }}
$$

The circuit for calculating the small-signal open-loop gain is,

R_{1} is not influenced by feedback so $\frac{v_{1}}{i_{1}}=R_{1}=1 \mathrm{k} \Omega$

$$
\begin{aligned}
& R_{o}=R_{4}+\left(1 / g_{m 3}\right)=1 \mathrm{k} \Omega+1 \mathrm{k} \Omega=2 \mathrm{k} \Omega \rightarrow \quad R_{o F}=2 \mathrm{k} \Omega(1+2.5)=7 \mathrm{k} \Omega \\
& R_{\text {out }}=\frac{v_{2}}{i_{2}}=\left(R_{o F}-R_{4}\right)\left\|R_{4}=7 \mathrm{k} \Omega\right\| 1 \mathrm{k} \Omega=875 \Omega \quad \frac{v_{2}}{i_{2}}=875 \Omega
\end{aligned}
$$

Problem 3-(20 points - This problem is optional) The simplified schematic of a feedback amplifier is shown. Use the method of feedback analysis to find $v_{2} / v_{1}, R_{\text {in }}=v_{1} / i_{1}$, and $R_{\text {out }}=v_{2} / i_{2}$. Assume that all transistors are matched and that $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{d s}=$ ∞.

Solution

This feedback circuit is shunt-series. We begin with the open-loop, quasi-ac model shown below.

The small-signal, open-loop I_{S}^{\prime} model is:

$$
\begin{aligned}
& \frac{I_{o}^{\iota}}{I_{s}^{\star}}=\left(\frac{I_{o}^{\leftarrow}}{V_{g s 2}}\right)\left(\frac{V_{g s 2}}{V_{g s 1}}\right)\left(\frac{V_{g s 1}}{I_{s}^{\bullet}}\right) \\
& V_{g s 2}= \\
& \quad-g_{m 1} V_{g s 1} R_{2}-g_{m 2} V_{g s 2} R_{4}
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{V_{g s 2}}{V_{g s 1}}=\frac{-g_{m 1} R_{2}}{1+g_{m 2} R_{4}}=-\frac{50}{2}=-25 \quad \therefore \frac{I_{o}^{\iota}}{I_{s}^{\bullet}}=\left(g_{m 2}\right)(-25)\left(\frac{-1}{g_{m 1}}\right)=25 \mathrm{~A} / \mathrm{A} \\
& \beta=\frac{I_{f}^{\iota}}{I_{o}^{\bullet}}=\left(\frac{I_{f}^{\iota}}{V_{g s 3}}\right)\left(\frac{V_{g s 3}}{I_{o}^{\leftarrow}}\right)=\left(g_{m 3}\right)\left(\frac{R_{1}}{1+g_{m 3} R_{4}}\right)=(1 \mathrm{~mA} / \mathrm{V})(0.5 \mathrm{k} \Omega)=0.5
\end{aligned}
$$

$\therefore A \beta=25 \cdot 0.5=12.5$
$R_{i}=\frac{v_{1}^{\leftarrow}}{I_{s}^{\leftarrow}}=\frac{1}{g_{m 1}}=1 \mathrm{k} \Omega \rightarrow R_{\text {in }}=R_{i f}=\frac{R_{i}}{1+A \beta}=\frac{1000}{13.5}=74.07 \Omega$
$R_{\text {out }}=50 \mathrm{k} \Omega \quad\left(R_{3}\right.$ is outside the feedback loop)
$\frac{I_{o}}{I_{s}}=\frac{A}{1+A \beta}=\frac{25}{1+12.5}=1.852 \mathrm{~A} / \mathrm{A} \rightarrow \frac{v_{2}}{v_{1}}=\frac{I_{o}(-50 \mathrm{k} \Omega)}{I_{s}(74.07 \Omega)}=-1240.1 \mathrm{~V} / \mathrm{V}$

Problem 4-(20 points - This problem is optional)

If the op amps shown are ideal (infinite voltage gain, infinite differential input resistance, and zero output resistance) find the voltage transfer function, $V_{\text {out }}(s) / V_{\text {in }}(s)$, the input impedance, $Z_{\text {in }}(s)$, and the output impedance, $Z_{\text {out }}(s)$. Sketch an asymptotic plot for the magnitude and phase shift of the voltage transfer function, $V_{\text {out }}(i \omega) / V_{\text {in }}(j \omega)$ as a function of $\log _{10} \omega$.

Solution

$V_{o 2}(s)$ can be written as $V_{o 2}(s)=-\frac{R_{2}}{Z_{1}} v_{\text {out }}(s)$. Thus, the currents flowing toward the inverting terminal of the 1st op amp are, $\frac{V_{\text {in }}(s)}{R}+\frac{V_{o 2}(s)}{R}=\frac{V_{\text {in }}(s)}{R}-\frac{R_{2} V_{\text {out }}(s)}{Z_{1}(s) \quad R}=0$
$\therefore \frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{Z_{1}(s)}{R_{2}}=\frac{1}{R_{2}} \frac{R_{1}\left(1 / s C_{1}\right)}{R_{1}+\left(1 / s C_{1}\right)}=\frac{R_{1}}{R_{2}} \frac{1}{s R_{1} C_{1}+1} \quad \frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{R_{1}}{R_{2}} \frac{1}{s R_{1} C_{1}+1}$
By inspection, $Z_{\text {in }}(s)=R=10 \mathrm{k} \Omega$ and $Z_{\text {out }}(s)=0$
For the Bode plot we want to plot the magnitude and phase of $\frac{V_{o u t}(j \omega)}{V_{i n}(j \omega)}=\frac{10}{1+j \omega / 10}$.

Problem 5-(20 points - This problem is optional)
1.) If $g_{m}=2 \mathrm{~mA} / \mathrm{V}$, what is the midband voltage gain of the amplifier shown? Assume $r_{d}=\infty$.
2.) Find the lower -3 dB frequency $\left(f_{L}\right)$ of the amplifier shown.

Solution

The small signal model for this problem is:

$$
\frac{V_{o u t}(s)}{V_{\text {in }}(s)}=\left(\frac{\mathrm{V}_{\text {out }}}{V_{g s}}\right)\left(\frac{V_{g s}}{V_{\text {in }}}\right)
$$

$\therefore \frac{V_{\text {out }}}{V_{g s}}=\frac{-g_{m} R_{3} R_{4}}{R_{3}+R_{4}+\frac{1}{s C_{2}}}=\left(\frac{-g_{m} R_{3} R_{4}}{R_{3}+R_{4}}\right)\left(\frac{s}{s+\frac{1}{C_{2}\left(R_{3}+R_{4}\right)}}\right)=(-20)\left(\frac{\mathrm{s}}{\mathrm{s}+25}\right)$
Next, find $V_{g s} / V_{i n}$:
$\frac{V_{i n}+V_{g s}}{R_{1}+\frac{1}{s C_{1}}}+\frac{V_{g s}}{R_{2}}+g_{m} V_{\mathrm{gs}}=0 \rightarrow \frac{-V_{i n}}{R_{1}+\frac{1}{s C_{1}}}=V_{g s}\left(\frac{1}{R_{1}+\frac{1}{s C_{1}}}+\frac{1}{R_{2} \|\left(1 / g_{m}\right)}\right)$
or

$$
\begin{aligned}
-V_{i n}\left(R_{2} \| \frac{1}{g_{m}}\right) & =V_{g s}\left(R_{2} \| \frac{1}{g_{m}}+R_{1}{ }^{\circ \circ}+\frac{1}{\S C_{1}}\right) \rightarrow \frac{V_{g s}}{V_{i n}}=\left(\frac{R_{2} \| \frac{1}{g_{m}}}{R_{1}+R_{2} \| \frac{1}{g_{m}}}\right)\left(\frac{s}{s+\frac{1}{C_{1}\left[R_{1}+R_{2} \| \frac{1}{g_{m}}\right]}}\right) \\
\frac{V_{g s}}{V_{i n}} & =\frac{-0.33}{1+0.33}\left(\frac{s}{s+37.5}\right)=(-0.25)\left(\frac{s}{s+37.5}\right)
\end{aligned}
$$

Thus, $\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=5\left(\frac{\mathrm{~s}}{\mathrm{~s}+25}\right)\left(\frac{\mathrm{s}}{\mathrm{s}+37.5}\right)$

$$
\therefore \quad \text { MBG }=5, \omega_{L} \approx \sqrt{(25)^{2}+(37.5)^{2}}=45.07 \mathrm{rads} / \mathrm{sec} \rightarrow f_{L}=7.17 \mathrm{~Hz}
$$

Problem 6 - (20 points - This problem is optional)
The FET in the amplifier shown has $g_{m}=$ $1 \mathrm{~mA} / \mathrm{V}, r_{d}=\infty, C_{g d}=0.5 \mathrm{pF}$, and $C_{g s}=10 \mathrm{pF}$. (a.) Find the midband gain, $V_{\text {out }} / V_{i n}$. (b.) Find the upper -3 dB frequency, f_{H}, in Hz . (Note: You cannot use the Miller's theorem on this problem because there is no bridging capacitor.)

Solution

The small signal model for the high frequency range is shown where $R_{34}=R_{3} \| R_{4}=10 \mathrm{k} \Omega$.

Because the capacitors are independent, probably the best way to work this problem is by superposition (open-circuit time constants). Therefore, $C_{g s}$:

$$
R_{C g s}=R_{1}\left\|R_{2}\right\|\left(1 / g_{m}\right)=1 \mathrm{~K}\|1 \mathrm{~K}\| 1 \mathrm{~K}=333 \Omega \rightarrow \omega_{C g s}=\frac{1}{C_{g s} \cdot 333 \Omega}=300 \mathrm{Mrads} / \mathrm{sec} .
$$

$C_{g d}$:

$$
R_{C g d}=R_{34}=10 \mathrm{k} \Omega \rightarrow \omega_{C g d}=\frac{1}{C_{g d} \cdot 10 \mathrm{k} \Omega}=200 \mathrm{Mrads} / \mathrm{sec}
$$

$\therefore \omega_{H} \approx \frac{1}{\sqrt{\left(\frac{1}{300 \mathrm{Mrads} / \mathrm{sec}}\right)^{2}+\left(\frac{1}{200 \mathrm{Mrads} / \mathrm{sec}}\right)^{2}}}=166 \mathrm{Mrads} / \mathrm{sec}$.
$f_{L}=26.48 \mathrm{MHz}$
The midband gain is given as

$$
\mathrm{MBG}=\left(\frac{R_{2} \| \frac{1}{g_{m}}}{R_{1}+R_{2} \| \frac{1}{g_{m}}}\right)\left(\frac{-g_{m} R_{3} R_{4}}{R_{3}+R_{4}}\right)=\left(\frac{-0.5}{1.5}\right)(-10)=3.33 \mathrm{~V} / \mathrm{V}
$$

Problem 7- (20 points - This problem is optional).

A BJT amplifier is shown. Assume that the BJT has the small signal parameters of $g_{m}=$ $50 \mathrm{~mA} / \mathrm{V}, r_{,}=2 \mathrm{k} \Omega$, and $\mathrm{r}_{\mathrm{o}}=\infty$.
a.) Find the midband voltage gain of this amplifier, $V_{\text {out }} / V_{i n}$.
b.) Find the numerical value of all poles and zeros of the low frequency response.
c.) Find the value of the lower -3 dB frequency, f_{L}, in Hz .

Solution

The low-frequency, small signal model for this problem is shown where $R_{B}=$ $50 \mathrm{k} \Omega$.
The algebraic approach to this problem
 is:

$$
\left.\begin{array}{rl}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\left(\frac{V_{\text {out }}}{I_{b}}\right)\left(\frac{I_{b}}{I_{\text {in }}}\right)\left(\frac{I_{\text {in }}}{V_{\text {in }}}\right)=\left(\frac{-\beta R_{L} R_{C}}{R_{C}+R_{L}+\frac{1}{\mathrm{~s} C_{2}}}\right)\left(\frac{R_{B}}{R_{B}+r_{"}+(1+\beta) R_{E}}\right)\left(\frac{1}{\frac{1}{\mathrm{~s} C_{1}}+R_{B} \|\left[r_{, "}+(1+\beta) R_{E}\right]}\right) \\
& =\left(\frac{-\beta R_{L} R_{C}}{\left(R_{C}+R_{L}\right)\left[r_{, "}+(1+\beta) R_{E}\right]}\right)\left(\frac{\mathrm{s}}{\mathrm{~s}+\frac{1}{C_{2}\left(R_{C}+R_{L}\right)}}\right)\left(\mathrm{s}+\frac{1}{C_{1}\left(R_{B} \|\left[r_{"}+(1+\beta) R_{E}\right]\right)}\right.
\end{array}\right)
$$

The midband gain is $M B G=4.854 \mathrm{~V} / \mathrm{V}$
$\therefore \quad \omega_{L} \approx \sqrt{(29.7)^{2}+(50)^{2}}=58.2 \mathrm{rads} / \mathrm{sec} . \rightarrow f_{L}=9.26 \mathrm{~Hz}$
The poles and zeros are,
Two zeros at $\mathrm{s}=0$, a pole at $\mathrm{s}=-29.7 \mathrm{rads} / \mathrm{sec}$. and a pole at $\mathrm{s}=-50 \mathrm{rads} / \mathrm{sec}$.

Problem 8 - (20 points, this problem is optional)

A common-emitter BJT amplifier is shown. Assume that the BJT has a $\beta=h_{f e}=100, C_{\mu}=2 \mathrm{pF}, V_{t}=$ $25 \mathrm{mV}, f_{T}=500 \mathrm{MHz}, r_{b}=0 \Omega$, and $r_{o}=\infty$.
a.) Find the numerical values of r_{π}, g_{m}, and C_{π}.
b.) If $r_{\pi}=1 \mathrm{k} \Omega, g_{m}=0.01 \mathrm{~A} / \mathrm{V}$ and $C_{\pi}=10 \mathrm{pF}$ for the above amplifier, find the value of the upper -3 dB frequency, f_{H}, in Hz .

Solution

a.) $g_{m}=\frac{I_{C}}{V_{T}}=\frac{1 \mathrm{~mA}}{25 \mathrm{mV}}=0.04 \mathrm{~A} / \mathrm{V}$

$$
r_{\pi}=\frac{\beta_{\mathrm{o}}}{g_{m}}=\frac{100}{0.04}=2500 \Omega
$$

$$
C_{\pi}=\frac{g_{m}}{\omega_{T}}-C_{\mu}=\frac{0.04}{2 \pi \cdot 500 \times 10^{6}}-2 \mathrm{pF}=12.732 \mathrm{pF}-2 \mathrm{pF}=10.732 \mathrm{pF}
$$

b.) The high-frequency, small-signal model for this problem is shown where $R_{C L}=R_{C} \| R_{L}=5 \mathrm{k} \Omega$.
The midband gain of this amplifier is given by

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\left(\frac{V_{\text {out }}}{V_{",}}\right)\left(\frac{V_{,,}}{V_{\text {in }}}\right)=-g_{m} R_{C} \| R_{L}\left(\frac{r_{,,}}{r_{,}+R_{S}}\right)=(-0.01 \cdot 5 \mathrm{k} \Omega)(0.5)=-25 \mathrm{~V} / \mathrm{V}
$$

$\therefore \quad \mathrm{MBG}=-25 \mathrm{~V} / \mathrm{V}$
Using Miller's theorem on this problem:
If $\frac{1}{\omega_{H} C} \gg R_{C} \| R_{L}$, then $C_{e q} \approx C_{\text {" }}+C\left(1+g_{m} R_{C} \| R_{L}\right)=10 \mathrm{pf}+2 \mathrm{pF}(1+50)=112 \mathrm{pF}$
We know that, $\omega_{H}=\frac{1}{C_{e q}\left(r_{,} \| R_{S}\right)}=\frac{1}{(112 \mathrm{pF} \cdot 500 \Omega)}=17.86 \mathrm{Mrads} / \mathrm{sec}$.

$$
\therefore \quad f_{H}=\frac{\omega_{H}}{2 \pi}=2.842 \mathrm{MHz}
$$

Note that:

$$
\frac{1}{\omega_{H} C}=\frac{10^{6}}{17.86 \cdot 2}=28.06 \mathrm{k} \Omega>5 \mathrm{k} \Omega \text { so that the Miller approximation (neglecting } C_{\mu} \text {) }
$$

is valid.

