$2 k\Omega$

Homework Assignment No. 1 - Solutions

Problem 1 (Corrected)

(a.) The first thing to do is to find Thevenin's equivalent circuit seen from the diode.

The Thevenin voltage is,

$$V_{TH} = V_{IN} \left(\frac{2}{3} - \frac{1}{3} \right) = \frac{V_{IN}}{3}$$

The Thevenin resistance is,

$$R_{TH} = 1 \text{k}\Omega || 2 \text{k}\Omega + 1 \text{k}\Omega || 2 \text{k}\Omega = \frac{4}{3} \text{k}\Omega$$

The equivalent circuit now becomes,

Now , with V_{IN} = 10V, we know the diode is forward biased. Therefore, replacing it with a short-circuit gives,

$$V_D = \underline{0V}$$
 and $I_D = \frac{10}{3} \times \frac{3}{4k\Omega} = \underline{2.5 \text{ mA}}$

(b.) With $V_{IN} = -10$ V, we know the diode is reverse biased. Therefore replacing it with an open-circuit gives,

$$V_D = -3.33 \text{V}$$
 and $I_D = 0 \text{ mA}$