QUIZ NO. 1 - SOLUTION

(Average Score = 8.0)
The following questions give the dc voltages at the terminals of an active device. You are to calculate the designated dc current.
a.) Find the diode current, I_{D}, where $I_{S}=100 \mathrm{fA}$ and $V_{T}=0.025 \mathrm{~V}(2 \mathrm{pts})$.

Obviously, the diode is forward biased. Therefore,

$$
I_{D}=I_{S} \exp \left(\frac{V_{D}}{V_{T}}\right)=10^{-13} \exp \left(\frac{0.6}{0.025}\right)=\underline{\underline{2.65 \mathrm{~mA}}}
$$

F02Q01P1A
b.) Find the drain-source current, $I_{D S}$, where $K_{n}{ }^{\prime}=25 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=1 \mathrm{~V}$ and $W / L=10$ (2 pts).
We see that the enhancement, n-channel MOSFET is in the saturation region. Therefore,

F02Q01P1B

$$
I_{D S}=\frac{K_{n}{ }^{\prime} W}{2 L},\left(V_{G S}-V_{T N}\right)^{2}=\frac{25 \cdot 10}{2}(2-1)^{2}=\underline{\underline{125} \mu \mathrm{~A}}
$$

c.) Find the collector, emitter, and base currents, I_{C}, I_{E}, and I_{B} if $I_{S}=$ $100 \mathrm{fA}, V_{T}=0.025 \mathrm{~V}$ and $\beta_{F}=100(4 \mathrm{pts})$.

We see that the npn BJT is in the forward active region. Therefore,

$$
\begin{aligned}
& I_{C}=I_{S} \exp \left(\frac{V_{B E}}{V_{T}}\right)=10^{-13} \exp \left(\frac{0.7}{0.025}\right)=\underline{144.6 \mathrm{~mA}} \\
& I_{B}=\frac{I_{C}}{\beta_{F}}=\underline{\underline{1.446 \mathrm{~mA}} \quad \text { and } \quad I_{E}=I_{C}+I_{B}=\underline{146 \mathrm{~mA}}}
\end{aligned}
$$

d.) Repeat (b.) if $V_{D}=1 \mathrm{~V}$ and $V_{G}=3 \mathrm{~V}(2 \mathrm{pts})$.

We see that the enhancement, n-channel MOSFET is in the linear region. Therefore,

$$
I_{D S}=K_{n}, \frac{W}{L}\left(V_{G S}-V_{T N}-\frac{V_{D S}}{2}\right) V_{D S}=25 \cdot 10(3-1-0.5)(1)=\underline{\underline{375} \mu \mathrm{~A}}
$$

