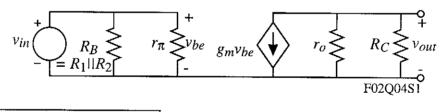

QUIZ NO. 4 - SOLUTION

(Average score = 7.2/10, 5 people did not take the quiz so true average is higher.)


An NPN BJT common-emitter inverting amplifier is shown. Assume the parameters of the transistor are $\beta_F = 100$, $V_T = 25 \text{mV}$, and $V_A = 100 \text{V}$. (a.) If $I_C = 0.5 \text{mA}$ and $V_{CE} = 3 \text{V}$, find the small signal model parameter values for g_m , r_{π} and r_o . (b.) Find an algebraic expression for the small signal voltage gain, v_{out}/v_{in} . (c.) Numerically evaluate the small signal voltage gain, v_{out}/v_{in} .

Solution

(a.)
$$g_m = \frac{I_C}{V_T} = \frac{0.5 \text{mA}}{25 \text{mV}} = 20 \text{mS}$$
 F02Q04P1 $\frac{1}{2} = \frac{1}{2} = \frac{100}{20 \text{mS}} = \frac{100}{20 \text{mS}} = \frac{100}{20 \text{mS}} = \frac{V_A + V_{CE}}{I_C} = \frac{102}{0.5 \text{mA}} = \frac{204 \text{k}\Omega}{1000 \text{m}}$

(b.) To find the small signal voltage gain, we must first develop a small signal model. This model is given below:

$$\frac{v_{out}}{v_{in}} = \frac{v_{out}}{v_{be}} = -g_m(r_o || R_C)$$

(c.) The numerical value of this gain is

$$\frac{v_{out}}{v_{in}} = -20 \text{mS}(204 \text{k}\Omega || 10 \text{k}\Omega) = -20 \text{mS}(9.53 \text{k}\Omega) = -190.65 \text{ V/V}$$