OUIZ NO. 5 - SOLUTION

(Average Score = 6.2/10 of those who took the quiz)

A PMOS common-drain amplifier is shown. Assume the parameters of the transistor are k_F = 0.5mA/V², V_{TP} = -1V, and λ = 0. (a.) If I_{SD} = 0.5mA, find the small signal model parameter values for g_m and r_o . (b.) Find an algebraic expression for the small signal input resistance, R_{in} , the output resistance, R_{out} , and the voltage gain, v_{out}/v_{in} . (c.) Numerically evaluate the small signal input resistance, R_{in} , the output resistance, R_{out} , and the voltage gain, v_{out}/v_{in} .

Solution

(a.)
$$g_m = \sqrt{2I_{SD}k_P} = \sqrt{2.0.5.0.5} \text{ mS} = 0.707\text{mS}$$
 and $r_o = \infty$

(b.) First we need a small signal model.

Obviously, $R_{in} = R_G = R_1 || R_2$. For R_{out} we apply the voltage source, v_t , and set $v_{in} = 0$ and solve for v_t/i_t which equivalent to R_{out} .

$$i_t = G_S v_t - g_m v_{gs} = G_S v_t - g_m (v_g - v_s) = G_S v_t - g_m (0 - v_s)$$

$$= G_S v_t + g_m v_s = G_S v_t + g_m v_t = (G_S + g_m) v_t$$

$$\therefore \qquad R_{out} = \frac{v_t}{i_t} = \frac{1}{G_S + g_m} = \frac{R_S}{1 + g_m R_S} \quad \rightarrow \qquad \boxed{R_{out} = \frac{R_S}{1 + g_m R_S}}$$

The output voltage can be expressed as,

$$v_{out} = g_m R_S v_{gs} = g_m R_S (v_g - v_s) = g_m R_S (v_{in} - v_{out})$$

$$\therefore v_{out}(1+g_mR_S) = g_mR_S v_{in} \rightarrow \frac{v_{out}}{v_{in}} = \frac{g_m R_S}{1+g_m R_S}$$

(c.)
$$R_{in} = R_G = R_1 || R_2 = \underline{2.4M\Omega}, R_{out} = \underline{8k\Omega} = \underline{1.2k\Omega} \text{ and } \frac{v_{out}}{v_{in}} = \underline{0.707 \cdot 8} = \underline{0.85 \text{V/V}}$$