FEEDBACK AMPLIFIER PROBLEMS

- 1.) Use the concepts of negative feedback to design R_D and R_S so that if g_m varies by \pm 50% that the voltage gain, V_2/V_1 , is equal to -10 \pm 10%. The nominal value of $g_m = 2 \times 10^{-3}$ mhos and r_d is infinite. (Answer: $R_D = 25$ kilohms and $R_S = 2$ kilohms)
- +VDD

 RD

 +VDD

 RD

 +V1 RG= NS V2
- 2.) A single-loop feedback circuit is shown. Solve for the input resistance defined as

 $R_{in} = V_1/I_1$ for the element values shown. (Answer: $R_{in} \approx 10^9$ ohms)

3.) Find the output impedance of the circuit shown where this impedance is designated as R_{out} . Assume that r_d is infinite and that $g_m = 5 \times 10^{-3}$ mhos.

(Answer: $R_{out} = 2.22 \text{ kilohms}$)

4.) A negative feedback circuit is shown below. Use the techniques of feedback analysis to analyze this circuit and find the voltage gain, V_2/V_1 , the current gain, I_2/I_1 , the input resistance, V_1/I_1 , and the output resistance, V_2/I_2 . Assume that r_{π} ie = 1K and B = 100 for both transistors. Ignore r_0 and r_0 . (Answer: $\frac{V_2}{V_1} = 2.94$, $\frac{I_2}{I_1} = -1874$, $\frac{V_1}{I_1} = 6.376$ M Ω , $\frac{V_2}{I_2} = 80.43\Omega$)

$$I_{i}$$
 I_{i}
 QI
 AK
 I_{i}
 QI
 AK
 I_{i}
 I_{i}

5.) Use the methods of opening the feedback loop to find R_{in} , V_2/V_1 , and R_{out} of the circuit shown. Assume the $g_m=3X10^{-3}$ mhos, r_d is infinite, B=100 and $r_\pi=1000$ ohms. (Answer: $\frac{V_2}{V_1}=20.12$, $R_{in}=1M\Omega$, $R_{out}=280\Omega$)

Rin V_1 Rin $V_$

- 6.) A feedback amplifier using BJT's is shown below.
 - a.) What type of single loop feedback topology is this circuit? Identify the variables X_S , X_f , X_k , and X_0 with regard to their location in the circuit and whether they are voltages or currents. (Answer: voltage series)
 - b.) Assume that the open loop gain is much greater than unity and find an approximate value for V_0/V_{in} . (Answer: 100)
 - c.) Calculate the voltage gain, V_0/V_{in} , using the methods of opening the feedback loop and calculating A and B. Do not assume that the loop gain is greater than unity. (Answer: 79.67)
 - d.) Calculate R_{in} and R_{out} of this circuit. (Answer: R_{in}=63.98 K Ω , R_{out}=164 Ω)

(Answer: $r_{\pi}1=r_{\pi}2=r_{\pi}3=1$ K Ω B₁=B₂=B₃ = 50)

7.) Use the concepts of feedback analysis to find V_2/V_1 , $V_1/I_1=R_{in}$, and $V_2/I_2=R_{out}$. Do not assume that the open loop gain is much greater than unity. Assume that all transistors are identical with B=100 and $r_0=r_u=\infty$ and $I_{C1}=0.6$ mA, $I_{C2}=I$ mA, and $I_{C3}=4$ mA.

(Answer: $\frac{V_2}{V_1} = 50,21$, $R_{in} = 3.187 M \Omega$, $R_{out} = 600 \Omega$)

8.) A two stage feedback circuit is shown below. Assume that both transistors are identical and have a B=100 and an r_{π} =1000 ohms. Use the methods of feedback analysis to find / B, Af, Rin=V1/I1, Rout=V2/I, and V2/V1.

(Answer: A=0.04975 mhos, B=2K Ω , Af=4.95 X10⁻⁴ mhos, R₀=10K,

$$\frac{V_2}{V_1} = -4.9$$
, $R_{in} = 20M\Omega$)

9.) A feedback circuit is shown. Do not assume that the loop gain is much greater than unity. Find V_2/I_1 , R_{in} , and R_{out} . Assume that r_{π} = 1000 ohms, B = 100, g_m = .001 mhos, and $r_d \simeq \infty$.

(Answer:
$$\frac{V_2}{I_1} = -34,400\Omega$$
, $R_{in} = 643\Omega$, $R_{out} = 10K\Omega$)

10.) A feedback circuit is shown. Do not assume that the loop gain is much greater than unity. Find V_2/V_1 , $R_{in}=V_1/I_1$, and $R_{out}=V_2/I_2$. Assume all transistors are identical and have B=100 and $r_{\pi}=1000$ ohms. (Answer: $\frac{V_2}{V_1}=100.79$, $R_{in}\cong 1$ K Ω , $R_{out}=10$ K Ω)

11.) For the feedback network shown find V_0/V_g , R_{in} , and R_{out} . Assume that $r_{\pi 1}=r_{\pi 2}=r_{\pi 3}=1000$ ohms and $R_{1}=R_{2}=R_{3}=100$.

(Answer: $\frac{V_0}{V_g}$ -20.0, R_{in} =

12.) A single loop negative feedback circuit is shown. Assume that B=100, $r_{\pi}\text{=}1000 \text{ ohms, and that } r_{u}\text{=}r_{o}\text{=}0 \text{ for all BJT's and that } g_{m}\text{=}1x10^{-3} \text{ mhos and } rd \text{ is infinite for the JFET. Do not assume that the loop gain is much greater than one. Use the methods of opening the feedback loop and identify <math>X_{S}$, X_{i} , X_{f} , and X_{o} ; find values for A and B; and solve for V_{out}/V_{in} , R_{in} , and R_{out} .

(Answer: A=9.09 X 10^6 ohms, B= -10^{-5} mhos, $\frac{V_{out}}{V_{in}}$ 98.912, R_{in} =1000.1 ohms, R_{out}= 98.87 ohms)

13.) A negative feedback circuit is shown. Do not assume that the loop gain is greater than one and use the methods of opening the loop to calculate a value of V_2/V_1 and $R_{in}=V_1/I_1$. Assume that B=100, $r_{\pi}=1000$ ohms, $g_{m}=10^{-3}$ mhos, and $r_{ds}=10^{-1}$ infinity.

(Answer: $\frac{V_2}{V_1}$ 5.025, R_{in} = 10.187 ohms)

14.) The negative feedback amplifier shown has the current-shunt topology. Do not assume that A β >1 and use the methods of opening the feedback network to calculate A and β and numerically evaluate V_2/V_1 , R_{in} , and R_{out} . Assume both transistors are identical and have B=100 and r_{π} = 1000 ohms.

(Answer:
$$\frac{V_2}{V_1}$$
 = 1.0007 X 10⁵, R_{in} = 0.1 ohms, R_{out} = 10K ohms)

15.) A two stage feedback circuit is shown below. Assume that both JFET's are identical and have a $g_m=10^{-3}$ mhos and $r_d=\infty$. Use the methods of feedback analysis to find A, β , A_f , $R_{in}=V_1/I_1$, $R_{out}=V_2/I$, & V_2/V_1 .

(Answer: A = -334, B =
$$-\frac{1}{101}$$
, A_f = -77.47, $\frac{V_2}{V_1}$ = 33.4,

$$R_{in}$$
 = 23.29K ohms, R_{out} = 10K ohms)

16.) In the feedback circuit shown, assume that all the transistors are equal with β =100, r_{π} =1000 ohms, and r_{u} = r_{o} = ∞ . Do not assume that the loop gain is much greater than unity. Use the techniques of feedback analysis to find V_{2}/V_{1} , R_{in} , and R_{out} .

(Answer:
$$\frac{V_2}{V_1}$$
 = 9.899, R_{in} = 1010.1 ohms, R_{out} = 10K ohms)

17.) For the feedback amplifier shown, find V_2/V_1 , I_2/I_1 , R_{in} , and R_{out} . Assume that Q1 and Q2 are identical with small signal parameters of r_{π} =1000 ohms and β =100. Do not assume that $|A\beta|>>1$. (Answer: V_2 = 4.805, R_{in} = 1000.476 ohms, R_{out} = 1K ohms)

18.) For the circuit shown, assume that the β 's of all BJT's and the g_m of all JFET's are very large, approaching infinity. Assume further that h_{ie} 's are zero and that r_d is infinite. Identify the topology, label the variables X_s , X_i , X_f , and X_0 where X is a voltage or current, and find the approximate gain if a.) R_2 is the load resistor and b.) R_3 is the load resistor.

(Answer: a.)
$$\frac{I_0}{V_1} \approx \frac{1}{R_3}$$
, b.) $\frac{V_0}{V_1} \approx 1$)

19.) For the circuit shown, assume that the β of all BJT's and the g_m of all JFET's are very large, approaching infinity. Assume further that r_π 's are zero and that r_d is infinite. Identify the topology, label the variables X_S , X_i , X_f , and X_0 where X_i is a voltage or current, and find the approximate gain if a.) R_4 is the load resistor and b.) R_5 is the load resistor.

(Answer: a.)
$$\frac{I_0}{I_1} \approx \frac{R_1}{R_5}$$
, b.) $\frac{V_0}{I_1} \approx R_1$)

20.) A negative feedback circuit is shown. You are to use the assumption that Aβ>>1.

- 1. Find the approximate value of the DC output voltage, $V_{out}(DC)$. (Answer: 11.3V)
- 2. Find the approxiate AC voltage gain, v_{out}/v_{in} . (Answer: 9)
- 3. Give an estimate of the open loop forward gain of this circuit if all the transistors have an β = 100. (Answer: A \simeq 6230)
- 4. If $1/(R_1C_1) << 1/(R_2C_2)$, find the lower -3dB frequency and the

upper -3dB frequency. (Answer: f_{-3dB} (lower) = 15.9 Hz, f_{-3dB} (upper)=15.9KHz)

