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Introduction to Angular Momentum and Central 
Forces

What is a Central Force?

• A particle that moves under the influence of a force towards a fixed origin (also called 
central field) has conserved physical observables such as energy, angular momentum, 
etc.

– In a central force problem there is no external torque acting on the system 

• “The law of conservation of angular momentum is a statement about the rotational 
symmetry of a system” (Kevin. F Brennan, Pg.130)

• In a given system if angular momentum is conserved then it is rotationally symmetric. 
i.e., the particle’s wave function periodically ends in itself (can see in later slides)

• However, when an external field is applied to the system, the angular momentum is no 
longer symmetric. The applied force influences the particle to move in certain direction
breaking the rotational symmetry.
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Example of rotational symmetry

• For example, lets consider the electron and proton in a hydrogen atom. The 
central field would be the force they exert on each other pulling towards the 
centre of Mass G

• The angular momentum of the particle is a constant of motion (proved later 
on in the slides) the eigen states of the energy operator would be the same 
as the eigen states for the angular momentum.

• In this example, if there were interference from another particle (external 
field), the direction of movement of the particle is altered thus breaking the 
symmetry of space



What would you see in this lecture
• Angular momentum operator L commutes with the total energy Hamiltonian 

operator (H).
• Commutation relationship between different momentum operators
• Commutation of L with H
• Commutation of L2 with H
• Calculating eigen values for L2 with same eigen states as for H
• Calculating eigen values for Ф with L2 operator
• Calculating eigen values for Θ with L2 operator
• Spherical Harmonics to calculated eigen values for L and L2 using m and l 

values
• Lowering and raising momentum operators changes the z-component by one 

quantum number



Angular momentum
• A particle at position r1 with linear momentum p has angular momentum,,

Where r = r(x,y,z) and momentum vector is given by,

• Therefore angular momentum can be written as,

• Writing L in the matrix form and evaluating it gives the Lx, Ly and Lz
components 
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Cont
Therefore,

• In order to simplify the equation further we must consider the 
commutation of below,  
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Commutation Properties 
• Similarly we can show,

• If two operators do not commute, then from definition they cannot be found 
simultaneously, it can be shown that Lx and Ly do not commute therefore 
different components of angular momentum cannot be simultaneously 
determined. The commutation of Lx and Ly is given by,

• Similarly the commutation of other components is,

• As it can be seen, the individual components of L (angular momentum) 
operator do not commute with each other therefore they cannot be
simultaneously found
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L2 operator

• A new operator L2 is introduced because, this operator commutes with 
each individual components of L, however the components of L does not 
commute with each other. 

• L2 is given by,
• When a measurement is made, we can find the total angular momentum 

and only one other component at a time. 
• For example, if a wave function is an eigenfunction of Lz then it is not an 

eigenfunction of Lx and Ly
• Taking measurement of angular momentum along Lz (applying an external 

field), shows the total angular momentum direction in figure below.
• When a particle is under the influence of a central (symmetrical) potential, 

then L commutes with potential energy V(r). If L commutes with kinetic 
energy, then L is a constant of motion.

• If L commutes with Hamiltonian operator (kinetic energy plus potential 
energy) then the angular momentum and energy can be known  
simultaneously.
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Angular Momentum Constant of Motion

• Proof: To show if L commutes with H, then L is a constant of motion.
General Case: 

Let A is a time-independent operator, then

• Integrating above equation through all space we get,

But expectation value of A, 

Therefore,  

Since A is time independent, L.H.S is zero. Therefore when a time 
independent operator commutes with H, it’s a constant of motion
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L2 commutation with H
• Similarly since L is time independent, it can be said that if L commutes with H, then the 

time rate of change of L is zero and it is constant of motion.

• Since L2 is of high interest, it must be shown that L2 commutes with H

• It is easier to prove the above in spherical coordinates, but first writing angular 
momentum in spherical coordinates we get, graphical representation of spherical 
coordinates

•
• Where r, θ, Φ are written as,

• But 

• Writing L in terms of radial coordinates we get, 

• The i,j and k components of L are given as,
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Spherical Coordinates Vs Plane Coordinates
• In spherical Coordinate System a point P is represented by 

three componets
radius
Theta
Phi

• Where r is the radius, the distance between origin and point 
P

• Theta is the angle between the line joining point P to the 
origin and z-axis

• Phi is the angle between is the angle between the x-axis and 
the line projection on the XY plane.

• Click to get back to the slides.

Spherical Coordinate System

Note: The θ used in the slides is represented 
by φ in the picture and like versa.

θ

φ

r≤0
o1800 ≤≤ θ
o1800 ≤≤ ϕ



Calculating components of L2

• Given individual components of L given we can calculate L2 components :
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Calculating components for L2 Cont’
• Adding the squares of Lx,Ly and Lz components we get,

• cotθ=cos θ/sin θ taking 1/sin θ out of the last two terms we get

• d/dt(sin θ)=cos θ replacing it in the above equation

• The last two terms of R.H.S in the form                         , by 
simplifying it we get

• As it can be seen that L and  L2 is independent of r, therefore it 
commutes with any function of r or its derivative. Potential energy V(r) 
is a function of r. Therefore V(r) commutes with both L and L2
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L2 commutation with the Hamiltonian Operator

• The L2 operator needs to commute with the kinetic energy operator in order to 
commute with Hamiltonian operator as Hamiltonian operator is the sum of potential and 
kinetic energy.

• The kinetic energy operator in terms of L2 and r is given as,

• Since potential energy operator is dependent on radial component and kinetic energy is 
dependent only on L2 operator and radial component, L2 commutes with H operator 
because an operator can commute with another independent operator or with itself.

• Therefore angular momentum square operator commutes with the total energy 
Hamiltonian operator. With similar argument angular momentum commutes with 
Hamiltonian operator as well.

• When a measurement is made on a particle (given its eigen function), now we can 
simultaneously measure the total energy and angular momentum values of that 
particle.
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Eigen value calculation with L2 operator

• The Hamiltonian equation acting on wave function ψ can be given as,

• As angular momentum operator is only a function of θ and Φ and the rest of the 
Hamiltonian is a function of r, therefore we can split the wave function into its radial 
component and angular components R(r) and Y(θ,Φ) respectively. For notational 
purposes it is represented as R and Y.

• When L2 acts upon the eigen function we obtain the eigen value as given below,

• Where λ is the wavelength of the paticle

• Therefore, when Hamiltonian operator acts on the wave function, the L2 operator gives 
the above eigen value. The above H operator equation can be rewritten as,
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L2 operation on Y

• The only operator that has effect on Y is the L2 operator, once it has been 
operated its merely a multiplication of the eigen value with itself, therefore Y can 
be eliminated from the above equation.

• Therefore the eigen value equation for L2 is,

• Angular momentum operator has θ and Φ dependence and since Y is just a 
function of θ and Φ as well, we can separate Y(θ,Φ) into two components,

• Substituting Y into the above equation we get,
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• Because either sides of the equation above are independent of each other, the 
only way they can equal each other is if it were a constant. By equating the above 
two equations to a constant, we can obtain the solutions for each individual 
components separately.

• Therefore,

• The above differential equation can be solved to obtain an exponential solution for 
Φ as

• The above solution indicates that, the system is periodic with rotational symmetry, 
i.e. when the particle moves in a complete circle it ends back into itself in Φ
component. Therefore with a period of 2π the waveform above repeats itself at 
multiples of m.

Splitting Y into components
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Eigen value of Φ function
• The Φ function which is completely dependent on φ is an eigenfunction of lz

because the lz operator is defined as

• Therefore when lz operator acts on Φ, we get the original function back along with 
eigenvalue of the wave-function,

• The eigenvalue obtained is m   , this shows that the z component of angular 
momentum of a particle in the influence of central force is quantized, therefore 
the values obtained are discrete.

• After obtaining the solution for Φ function, lets try to obtain the solution for Θ
function, this is however complex compared to the Φ function, the differential 
equation for Θ function is,
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Solution for Θ function
• The equation for Θ function is (same as in previous page),

eq.1

• This differential equation is solved by using change of variables as given,

eq.2
• After substituting sin2θ = 1-ξ2 and the eq.2 into the differential equation eq.1 

we get,

eq.3
• Case 1 when the constant m2 is equal to zero, the above equation becomes,
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Solution Cont’

• The above equation can be further simplified to,

• The above equation is in the form of Legendre equation. The general form of 
Legendre equation is given as 

• The polynomials obtained from Legendre equation form an orthonormal set. The 
general solution for a Legendre equation is given as,

• The coefficient an+2 is given by,               
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Solution Cont’
• Applying the Legendre equation to our equation, we can see that x = ξ ; y” = F”

and λ = l(l+1).
• Therefore the general solution for the equation is,

• The summation coefficient also known as recursion relationship because the new 
coefficient ak+2 is dependent on its previous coefficient ak, is given as 

0<k<                                             
• The series must terminate at a finite value of k or the ratio ak+2/ ak approaches 

k/k+2, the solution diverges from θ = 0 or π and will no longer would be the eigen 
value of L2 . Therefore if the terminate the recursion at value l, such that l is the 
last term in the summation we get

• With m2=0 eq.3a becomes

eq.4
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Operation of L2 on Θ
• When L2 operator acts on Θ (function of θ) we get,

• Since Θ is independent of φ, the derivative of Θ w.r.t to φ is zero therefore L2

operating on Θ becomes,

• But from eq.4 the above equation can be written as,

• L2 operating on Θ gave the original function Θ back modified with a scalar 
constant. Therefore Θ is also an eigenfunction of L2 with eigen value h2 l(l+1). 
Where l is called an orbital angular-momentum quantum number. Explained in 
later slides
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Eigenvalues and Orbital Quantum Numbers
• Different values of l and its 

corresponding eigen values 
Pg.142

• The eigen values are given by the 
formula l(l+1), where l is any 
positive integer including zero.

• The state of the atom (or 
eigenstate) are expanded into 
linear combinations of one electron 
functions. The spatial components 
of these electron functions are 
called atomic orbitals. 

• As studied in chemistry s, p, d and 
f are the orbitals occupied by the 
electrons, as shown in the picture.

• s, p, d and f are characterized by 
the orbital quantum numbers as 
shown in the table above.

l Eigenvalue Spectroscopic State
0                         0                                     s
1                         2                                 p
2                         6                                 d
3                         12                                f
.                           .                              
.                           .                              alphabetic
.                           .                              from
l  /(l+1)                           here  

Table 3.1.1
Values of l and its corresponding Eigenvalues
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Spherical Harmonics

• The eq.3 is redefined in special harmonics. Special Harmonics are the angular 
portion of the solution to Laplace’s equations in spherical coordinates. The 
notation for special Harmonics is given by Ylm(θ, φ) and is given by,

• For each value of l there are 2 l +1 spherical harmonics given by the values of 
m, which range in integer steps from −l to + l. They all have the same angular 
momentum.

• The φ dependent part of Ylm (θ,φ) is still given by eimφ. Therefore Ylm (θ,φ) is still 
an eigenfunction of lz with an eigenvalue of m    and also L2.

• The total angular momentum of the particle is given by,

• The picture to the right shows the magnitude of 
the lz component and L component
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Spherical Coordinates Cont’

• Few spherical Harmonics are given by

• Example – Spherical Harmonics for l = 2,                  with possible total angular 
momentum values chosen along z-axis

• The values on circular rim represent the
total momentum values, whereas the 
values on the z-axis represent the m
values.
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Spherical Harmonics Cont’
• Like Legendre Polynomials, spherical harmonics for a complete basis set. All the 

basis components are orthogonal and completely span the space. The 
orthogonality condition for spherical coordinates is given as,

• As described above, the angular part of the wave function Ylm (θ,φ) is an 
eigenfunction for operators lz and L2. Their eigen values are,
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Angular momentum raising and lowering 
operators

• The angular momentum operators can be used to define the raising and lowering 
operators. The notations are L- and L+ used for lowering and raising respectively. They are 
given as,

• The Lx and Ly components given in the earlier slides is,
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Raising and lowering operator Cont’
• But ejФ=cosФ+i sin Ф, Therefore the final expression for the raising operator is,

• Similarly we can show, the lowering operator with e-iФ=cosФ-i sin Ф, is 

• When the raising and lowering operator are implemented on Ylm (θ,φ) , the only 
change it is going to bring is on the m value which represents the z component 
by one as shown in l = 2 example above
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Review
• For a spherically symmetric potential V(r), angular momentum is 

constant of motion.

• In a central force problem only one component and the magnitude of 

angular momentum can be found.

• Y(θ, φ) can be further split into independent components Θ(θ) and Ф(φ)

• Ф(φ) is an eigen function of lz operator

• Θ(θ) is an eigen function of L2 operator

• The eigen values of lz and L2 operator are given by m and l values

• Therefore the total angular momentum, z component and total energy 

can be simultaneously found in a central force problem.
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