
PeerCluster: A Cluster-Based
Peer-to-Peer System

Xin-Mao Huang, Cheng-Yue Chang, and Ming-Syan Chen, Fellow, IEEE

Abstract—This paper proposes a cluster-based peer-to-peer system, called PeerCluster, for sharing data over the Internet. In

PeerCluster, all participant computers are grouped into various interest clusters, each of which contains computers that have the same

interests. The intuition behind the system design is that by logically grouping users interested in similar topics together, we can improve

query efficiency. To efficiently route and broadcast messages across/within interest clusters, a hypercube topology is employed. In

addition, to ensure that the structure of the interest clusters is not altered by arbitrary node insertions/deletions, we have devised

corresponding JOIN and LEAVE protocols. The complexities of these protocols are analyzed. Moreover, we augment PeerCluster with

a system recovery mechanism to make it robust against unpredictable computer/network failures. Using an event-driven simulation,

we evaluate the performance of our approach by varying several system parameters. The experimental results show that PeerCluster

outperforms previous approaches in terms of query efficiency, while still providing the desired functionality of keyword-based search.

Index Terms—Data broadcasting, data sharing, hypercube, peer-to-peer.

Ç

1 INTRODUCTION

PEER-TO-PEER computing is attracting increasing attention,
and many peer-to-peer systems have emerged recently

as platforms for users to search and share information over
the Internet. In essence, a peer-to-peer system can be
characterized as a distributed network system in which all
participant computers have symmetric capabilities and
responsibilities. Explicitly, all participant computers in a
peer-to-peer system act as both clients and servers to one
another, thereby surpassing the conventional client/server
model and bringing all participant computers together to
yield a large pool of information sources and computing
power [11], [28].

As noted in [15], in terms of network structure, current
peer-to-peer systems can be classified into three categories,
namely, centralized, decentralized/unstructured, and decentra-
lized/structured systems. A well-known example of a
centralized peer-to-peer system is Napster [16], which
maintains a constantly updated directory at central loca-
tions. To determine which computers in Napster hold the
desired files, users’ queries are sent directly to the
centralized directory server for resolution. The advantage
of such a centralized system is that the costs (e.g., response
time and bandwidth consumption) of resolving a query are
minimized, since only two messages (i.e., one query and
one response message) and one round-trip delay are
incurred. However, centralized systems are prone to a
single point of failure problem. On the other hand, decentra-
lized/unstructured systems (e.g., Gnutella [8]) do not have a

centralized server or an explicit network topology.
Although such systems are fault-tolerant and resilient to
computers entering and leaving the system, the search
mechanism used in decentralized/unstructured systems (i.e.,
flooding query messages to neighboring computers within a
TTL (time-to-live) [8] framework) is not scalable [20]. In
addition, there is a high likelihood that many required files
are located outside the search scope of the TTL framework;
thus, the quality of the search results might be unsatisfac-
tory. This problem has been studied extensively in [9], [25],
[15], [6], [29]. In [9], the authors exploited data-mining and
text retrieval from previous queries to extract search rules.
Based on these rules, queries are routed to peers that are
more likely to have an answer. Meanwhile, for the Gnutella
system, Sripanidkulchai et al. [25] proposed the concept of
interest-based shortcuts to connect two peers that have
similar interests, where by a query is only flooded to the
entire system if none of the shortcuts have the requested
content. This method reduces hop-by-hop delays in overlay
networks. In [15], a search protocol, called random walker,
is proposed. It can reduce the message overhead signifi-
cantly. In [6], the authors propose the Gia system, which
creates a Gnutella-like P2P system that can handle much
higher aggregate query rates and functions efficiently as the
system size increases. The work in [29] presents three
techniques for efficient search, while considering such costs
as aggregate bandwidth and processing overhead.

Furthermore, several decentralized/structured peer-to-peer
systems are proposed in the literature [3], [18], [21], [26],
[30]. These works focus on providing one fundamental
lookup service, i.e., given a key, map the key onto a
participant computer. Depending on the application using
this service, a computer might be responsible for storing a
value associated with the key. In such a system, either the
network topology or the distribution of keys is devised in
such a way that the specific key distribution strategy
facilitates finding the corresponding computer efficiently.
In addition, the explicit network topology can limit the

1110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

. The authors are with the Department of Electrical Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan, R.O.C.
E-mail: {bigmoun, cychang}@arbor.ee.ntu.edu.tw,
mschen@cc.ee.ntu.edu.tw.

Manuscript received 14 Sept. 2003; revised 3 July 2004; accepted 10 May
2005; published online 24 Aug. 2006.
Recommended for acceptance by R. Schlichting.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0167-0903.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

logical distance between two arbitrary computers to an
upper bound. As a result, the performance of these
decentralized/structured peer-to-peer systems is guaranteed.
However, not every application can benefit from this
lookup service immediately. For instance, to support the
functionality of keyword-based search provided by a Web
search engine, one may utilize Chord [26] to implement a
distributed indexing system, where by a key is transformed
from the desired keywords, while values are lists of
machines offering the documents with those keywords.
Even so, such a keywords-to-key transformation is not
straightforward, since a user query consists of various of
keywords, and the transformation must guarantee that
arbitrary permutation of these keywords can be trans-
formed to the same key. In addition, depending on the
indexing schemes used, the potential cost of maintaining
the distributed indexes could vary dramatically. A new
method that provides keyword search functionality for a
DHT-based file system or archival storage system has been
proposed in [19]. However, these systems require the close
cooperation of every participant computer. In other words,
one user’s data or index of data is located on an other user’s
computer, depending on the key distribution strategy
employed. A conservative user may feel insecure with this
feature, because his data/index could be damaged if the
other user’s computer fails due to poor system design.

In this paper, we propose an innovative peer-to-peer
system, called PeerCluster, that addresses the above issues
from a new perspective. The principle design of PeerCluster
is based on the phenomenon that one user, at any given
time, is usually only interested in a few topics (typically one
or two) and tends to issue queries and share collections
about those topics he/she is interested in. (Similar
phenomena were also explored in previous studies [23],
[24].) Therefore, the intuition behind the design of PeerClus-
ter is that by logically grouping the computers of users/
computers interested in similar topics, we can increase the
query efficiency. This idea can be best understood by the

example in Fig. 1. In Fig. 1a, there are 16 computers in the
system, each interested in and sharing its collection about
one major topic (labeled A, B, C, or D in each node).
Suppose that the dark gray computers would like to make a
query about topic A. According to the network topology in
Fig. 1a, only one computer sharing its collection of topic A
will be reached within TTL ¼ 2. However, if we logically
group users interested in identical topics together, as shown
in Fig. 1b, three computers sharing their collections of topic
A will be reached within TTL ¼ 1. Note that in the case of
Fig. 1b, not only are the search costs reduced, but also the
quality of query results is improved. Thus, PeerCluster is
devised to logically group participant computers into
various interest clusters. This concept is illustrated in
Fig. 2, where three interest clusters are identified, i.e.,
movie, computer, and sport. To join this system, a computer
should initially specify one of the three topics as its major
interest. Then, following the JOIN protocol, which we
describe in Section 3, this joining computer will be logically
assigned to the corresponding interest cluster. To resolve a
query, the computer that receives the query first checks
whether the topic of the query agrees with the topic of the
interest cluster where this recipient computer resides. If it
does, the recipient computer will immediately broadcast the
query to other computers in the same interest cluster for
resolution (i.e., intracluster broadcasting). Otherwise, the
query will be routed to a certain computer which resides
in the corresponding interest cluster, and then, broadcast to
other computers in that cluster for resolution (i.e., inter-
cluster routing + intracluster broadcasting).

Intracluster broadcasting and intercluster routing are the
two major operations used to resolve queries in PeerCluster.
Considering the performance of these two operations on
various distributed network topologies [12], we employ
hypercube topology to realize the proposed system. As
shown in Fig. 3, the system in Fig. 2 can be realized with a
five-dimensional hypercube, where the three interest

HUANG ET AL.: PEERCLUSTER: A CLUSTER-BASED PEER-TO-PEER SYSTEM 1111

Fig. 1. An example to show the benefit of grouping together users who are interested in identical topics.

Fig. 2. The design concept of PeerCluster. Fig. 3. One possible hypercube topology for the example in Fig. 2.

clusters, movie, computer, and sport, form one four-dimen-
sional and two three-dimensional subhypercubes. Note that
the nodes and edges in Fig. 3 are both virtual entities. That
is, a node in a hypercube simply represents a relative
address in the hypercube, and an edge between two nodes
represents the neighborhood relationship between these
two hypercube addresses only. One hypercube address in
PeerCluster is always mapped to one participant computer.
However, one participant computer in PeerCluster could be
associated with multiple hypercube addresses, if the
number of participant computers is smaller than the
number of hypercube addresses. In addition, interest
clusters in PeerCluster do not have to be the same size
(e.g., in Fig. 3 the size of the movie cluster is larger than the
sport cluster). Actually, the cluster size will be proportional
to the popularity of each interest cluster.

The approach in [22] also exploits the hypercube
structure to construct a P2P system, named HyperCup,
where an ontology concept is used to connect different topic
hypercubes. Explicitly, a hypercube is an item of ontology.
Thus, in HyperCup, all hypercubes form a hierarchical
structure in which a hypercube can only connect with other
hypercubes that are one layer above or below it, or to its
sibling hypercubes. On the other hand, the clustering
technique in [17] integrates peers into locations already
populated by peers with similar characteristics. In [17], a
superpeer in a cluster is a peer that has better resources,
such as adequate bandwidth, fast processing speed, or
larger disk space. Other peers located in the same cluster
provide their data to the superpeer. Note that PeerCluster is
different from the systems in [22] and [17] in that it has two
kinds of link: interlink and intralink. Explicitly, each node
in PeerCluster holds an interlink and an intralink, and each
cluster holds the hypercube structure itself. Conceptually,
the PeerCluster system can be viewed as one entire
hypercube, whereas the HyperCup system is comprised of
many smaller hypercubes, and exploits the ontology
hierarchy concept to connect them. Also, in [22] and [17],
only some of the peers hold interlinks.

Hypercube topology has been extensively studied in the
context of computer architecture and parallel computing.
Due to its structural regularity and good potential for parallel
execution of various algorithms, the topology has been
applied to many innovative designs, such as multiprocessor
computers [5] and distributed communication networks [14],
[26], [30]. PeerCluster distinguishes itself from prior works in
the way it utilizes the hypercube topology, and is explicitly
unique in two respects. First, PeerCluster partitions the
hypercube structure into multiple parts to form several
interest clusters. Second, as we show later, the hypercube
topology provides a dynamically configurable address
scheme for PeerCluster. Specifically, to guarantee that the
structures of the interest clusters in PeerCluster will not be
altered by arbitrary node insertions/deletions, we have
devised JOIN and LEAVE protocols. This hypercube struc-
ture enables us to employ the Huffman coding technique [10] to
determine the address prefix for each interest cluster, which
greatly facilitates our design on the corresponding JOIN,
LEAVE, and SEARCH operations. The complexities of these
protocols are analyzed in Section 3. In addition, we augment
PeerCluster with a system recovery mechanism to make it
robust against unpredictable computer/network failures.

Note that the concept of PeerCluster can be applied to improve
the operation of some discussion boards by establishing
proper clusters [2]. In existing P2P systems, users have no
knowledge about new files that have been published recently.
In some discussion boards, the purpose of creating groups is
to publish files that have the same characteristics. By treating
such groups as predefined clusters in PeerCluster and the
number of articles as the popularity, we can analyze these
discussion boards to establish the clusters and facilitate the
corresponding query and file search. Note that the structure
of PeerCluster allows peers the flexibility of using all-to-all
broadcast schemes to exchange file indexes [7]. Using an
event-driven simulation, we evaluate the performance of
PeerCluster by varying several system parameters. The
experimental results show that PeerCluster performs well in
query efficiency, while providing the desired functionality for
keyword-based search.

The remainder of this paper is organized as follows:
Preliminaries are given in Section 2. The design of
PeerCluster is presented in Section 3. In Section 4, the
performance of PeerCluster is empirically evaluated. Finally,
in Section 5, we present our conclusions.

2 PRELIMINARIES

Based on the properties of hypercubes [13], we describe the
procedures for broadcasting and routing a message in the
hypercube Qn. Let Qsubq be the subhypercube of Qn, where
all hypercube addresses in Qsubq differ from each other in
the least significant subq bits only. To broadcast a message
from one node to all other nodes in Qsubq, each node in Qsubq

has to follow the broadcasting procedure, Proc_Broadcast, in
a recursively doubling manner. Proc_Broadcast takes four
arguments, subq, msg, node addr, and step, as the inputs.
subq specifies the subhypercube Qsubq, where the message
msg is broadcast; and node addr is the hypercube address of
the node executing the procedure. Proc_Broadcast is exe-
cuted immediately after a node receives the message sent by
another node in line 3 of Proc_Broadcast. An example of
broadcasting a message from node 000 to all other nodes in
Q3 is shown in Fig. 4. The values on the directed edges on
the right of Fig. 4 represent the values of the argument step
passed to the other nodes. For example, after node 001
receives the message sent by node 000 with the parameters
subq ¼ 3 and step ¼ 1, Proc_Broadcast(3, msg, 001, 1) is
performed immediately.

Proc Broadcast(subq, msg, node addr, step)

01 for (i ¼ step to subq � 1){

02 dest addr ¼ node addr� 2i;

1112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 4. An example of broadcasting a message from node 000 to all

other nodes in Q3.

03 send(subq, msg, dest addr, iþ 1);

04 }

Proc Route(msg, dest addr, node addr)

01 if (dest addr ! ¼ node addr) {

02 i ¼ Compare(dest addr, node addr);

03 send(msg, dest addr, node addr� 2i);

04 }

To route a message from one node to another in Qn,

we use the routing procedure called Proc_Route, which

takes three arguments as inputs: msg, dest addr, and

node addr. Specifically, msg is the message to be routed to

the destination node, dest addr is the hypercube address

of the destination node, and node addr is the hypercube

address of the current node that is executing the

procedure. The function Compare(dest addr, node addr)

in the Proc_Route returns the position of the first different

bit between dest addr and node addr in ascending order

from the least-significant bit (i.e., position 0) to the most-

significant bit, e.g., Compareð1010; 0100Þ ¼ 1. According to

Proc_Route, the routing path from node 001 to 110 is thus

001�!000�!010�!110.
Note that the notion of PeerCluster can be easily general-

ized in terms of generalized cubes [4] when the commu-

nication capability of a node is increased.

3 CLUSTER-BASED PEER-TO-PEER SYSTEM

We now present the system design of PeerCluster. The

system design is given in Section 3.1. The protocols for

computers joining/leaving and searching the system are

described in Section 3.2. In Section 3.3, we address the

scalability issue of PeerCluster. Section 3.4 extends PeerClus-

ter to allow a participant computer to join multiple interest

clusters. We present the system recovery mechanism of

PeerCluster in Appendix B.

3.1 Design of PeerCluster

As noted in Section 2, a system realized with an

n-dimensional hypercube is able to admit 2n computers

at most. To divide the system capacity (i.e., 2n hypercube

addresses) among various interest clusters, we employ the

Huffman coding technique to determine the address prefix

of each interest cluster in proportion to its popularity.

Assume that the entire system is an n-dimensional

hypercube, and there are k different interest topics in the

system. Let Ij denote the jth interest topic, where 0 � j �
k� 1. The popularity of Ij is denoted by pop½Ij�, where 0 <

pop½Ij� < 1 and
Pk�1

j¼0 pop½Ij� ¼ 1. Using the Huffman coding

technique, we first construct a Huffman tree from these pop½Ij�.
Then, based on the constructed Huffman tree, the address

prefix (denoted by prefix½Ij�) for each Ij is determined by the

path from the root to the leaf accordingly. For example,

suppose n ¼ 5 , k ¼ 6, and pop½I0�; . . . ; pop½I5� are equal to 0:3,

0:3, 0:15, 0:1, 0:1, and 0:05, respectively. The Huffman tree thus

constructed is shown in Fig. 5a. Based on this Huffman tree, the

address prefixes for the interest clusters I0; . . . ; I5 can be

determined as 00, 01, 100, 101, 110, and 111, respectively.

Once the address prefix for each interest cluster is deter-

mined, the size of the corresponding interest cluster can be

computed as 2n�lengthðprefix½Ij�Þ. As shown in Fig. 5b, the sizes of

the interest clusters I0; . . . ; I5 are thus 23, 23, 22, 22, 22, and 22,

respectively.
After determining the address prefix for each interest

cluster, we design the routing table for each participant
computer, as shown in Fig. 6. The routing table consists of
two kinds of information: the hypercube address(es) owned
by the participant computer, and the mapping from its
neighboring hypercube addresses to its neighboring com-
puters’ IP addresses. First, as explained in Section 1, one
participant computer can be associated with multiple
hypercube addresses in PeerCluster. In this case, the
participant computer is assigned one hypercube address
as its primary address; and the other addresses are its alias

HUANG ET AL.: PEERCLUSTER: A CLUSTER-BASED PEER-TO-PEER SYSTEM 1113

Fig. 5. Determining the address prefix of each interest cluster with the Huffman coding technique. (a) Huffman tree. (b) The corresponding
hypercube.

Fig. 6. The routing table of a participant computer whose primary

hypercube address is 00000.

addresses. In Fig. 6, the hypercube address 00000 is chosen
as computer blackcircle.net’s primary address and 00001,
00010, 00011, 00100, 00101, 00110, and 00111 as its alias
addresses. Second, to broadcast or route messages in
PeerCluster, a participant computer must keep track of the
mapping from its neighboring hypercube addresses to its
neighboring computers’ IP addresses. Let addrðAÞ denote
the set of hypercube addresses (including both primary and
alias addresses) owned by participant computer A. The set
of A’s neighboring hypercube addresses, denoted by
NHðAÞ, is defined as

S
ai2addrðAÞNeðaiÞ � addrðAÞ, where

NeðaiÞ is the set of the hypercube addresses adjacent to the
address ai. In Fig. 6,

A ¼ f00000; 00001; 00010; 00011; 00100; 00101; 00110; 00111g;
Neð00000Þ ¼ f00001; 00010; 00100; 01000; 10000g; and

NHðAÞ ¼ f01000; 01001; 01010; 01011; 01100; 01101;

01110; 01111; 10000; 10001; 10010; 10011;

10100; 10101; 10110; 10111g:

Note that, initially, there exist k computers in PeerCluster,
and they are deployed to maintain the system’s operation.
Computer j (0 � j � k� 1) owns all hypercube addresses of
the jth interest cluster. The primary address of computer j
is address 0 of its interest cluster. In the example in Fig. 5b,
initially there are six computers in the system, and their
primary addresses are 00000, 01000, 10000, 10100, 11000,
and 11100. In PeerCluster, these k existing computers are not
necessarily physical units. To reduce the deployment cost,
we can use fewer physical computers (< k) to deploy the
PeerCluster system. However, the trade-off will be system
reliability.

For address assignment, we utilize the assigned tree to
record the number of free addresses in every cluster. The
tree has the following properties:

1. The root address is the lowest address. In other
words, with the exception of prefix bits, all bits are 0.

2. The parent address and the child address differ from
each other by one bit only.

3. The child address is larger than the parent address.
4. The present address manages the assignment of the

child address.
5. Every address records the number of free addresses

of all its children. The initial number of free
addresses of children is the total number of the
subtrees.

6. When a parent address wants to assign a free
address to a joining request, it checks the number
of free addresses of its children starting from the
lowest low address and moving to higher addresses.

For example, Fig. 7 is an assigned tree of I1 in Fig. 5. The
prefix bit is 01. Thus, the root address is 01000. It records the
number of free addresses of its children, 01001, 01010, and
01100. The numbers of the free addresses are 1, 2, and 4.
When address 01000 receives a message to assign an
address, it first checks the number of free addresses of
01001. If the value is not equal to 0, the root address assigns
the address of 01001 and subtracts 1 from the total number
of free addresses of 01001. If the number of free addresses of
01001 is equal to 0 and the number of 01010 is not 0, the root

address sends a message to 01010 to assign the address and

subtracts 1 from the number of free address of 01010.

3.2 Description of Protocols

In a peer-to-peer system, computers are expected to join or

leave at any time. To guarantee that the structures of the

interest clusters will not be altered by arbitrary node

insertions/deletions, we have devised JOIN and LEAVE

protocols for PeerCluster. In addition, we have designed a

SEARCH protocol to resolve queries efficiently.

3.2.1 The JOIN Protocol

Let A denote the joining computer and IA denote the

interest cluster that A would like to join. The JOIN protocol

is comprised of four phases:

1. Find an arbitrary computer in the system. To join
PeerCluster, A must know at least one IP address of
an online computer to initially communicate within
the system. We assume that A is able to learn the IP
address of some online computer from an external
mechanism similar to Gnutella [27].

2. Using the computer found in Phase 1, find a
participant computer in the interest cluster with
the same major interest. Let B denote the computer
found in Phase 1 and IB denote the interest cluster
where B resides. A initially sends a Join Request
(JRQ) message containing the information of IA to B.
Upon receipt of the JRQ message, B will first check
whether IB ¼ IA. If IB ¼ IA, then B is a suitable
computer needed for Phase 2. However, if IB 6¼ IA, B
routes the JRQ message to some computer in IA that
owns the hypercube address with prefix½IA� and the
postfix of B’s primary address. For example,
suppose prefix½IA� ¼ 00, prefix½IB� ¼ 100 and B’s
primary hypercube address is 10000. Since IB 6¼ IA,
B will route the JRQ message to the computer that
owns the hypercube address 00000, i.e., computer
we find in Phase 2.

3. Using the computer found in Phase 2, find a
participant computer that owns an alias address in
its interest cluster. Let C denote the computer found
in Phase 2 and IC denote the interest cluster where C
resides. If C owns an alias address, then C is the
computer we want in Phase 3. However, if C does
not own an alias address, C conducts a Depth First
Search (DFS) in the broadcasting tree rooted from its
primary address to all other hypercube addresses in

1114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 7. The assigned tree of I1 in Fig. 5.

IC until it finds a suitable computer. If such a
computer exists, C will route the JRQ message to
that computer, and that computer will be the one we
find in Phase 3. Otherwise, it means that IC is full.
Then, C will execute the cluster extension function-
ality, which we describe in Section 3.3.

4. Acquire the hypercube address(es) from the com-
puter found in Phase 3 and update the related
routing tables. Let D denote the computer found in
Phase 3. Assume that addrðDÞ ¼ fd0; . . . ; dmg, where
d0 is D’s primary address and d1; . . . ; dm are D’s alias
addresses (d1 < . . . < dm). Let TD denote D’s broad-
casting tree rooted from d0 to all other addresses in its
interest cluster. In the Join Confirm (JCF) message
returned toA,Dwill assign d1 asA’s primary address
and the addresses that are the descendants of d1 in TD
as A’s alias addresses. In addition to the address, the
JCF message includes the routing information for A
from whichA can construct the routing table for itself.
Finally,Awill notify its neighboring computers of the
mapping from its hypercube addresses to its IP
address. In addition, D will also send the Decrease
Free Address (DFA) message to its ascendant ad-
dresses defined in the assigned tree until the root
address. When an address receives the DFA message
from its child address, it subtracts 1 from the
remaining free address value of the subtree that
contains the child address.

Example 3.1. As shown in Fig. 8a, there are initially six

participant computers in the system. The routing table of

the computer blackcircle.net is shown in Fig. 6. Suppose

that a new computer, greycircle.net, wants to join the

interest cluster I0. The computer found in Phase 1 is

whitesquare.net. The joining computer, greycircle.net,

will then send a JRQ message to whitesquare.net.

However, since whitesquare.net (whose primary hyper-

cube address is 11100) is not in I0, it will route, in

Phase 2, the JRQ message to 00000 via the path

11100�!11000�!10000�!00000, as shown in Fig. 8b.

Note that blackcircle.net, which owns the hypercube

address 00000, has an extra alias address in Phase 3. It

then sends a JCF message back to greycircle.net in

Phase 4, assigning the hypercube address 00001 as

greycircle.net’s primary address and the addresses

00011, 00101, and 00111 as its alias addresses. Also,

based on the routing information included in the JCF

message, greycircle.net can construct a routing table for

itself, as shown in the Fig. 8c. Finally, greycircle.net

notifies its neighboring computers of its IP address. The

routing table of blackcircle.net is thus revised, as shown

in Fig. 8c.

3.2.2 The LEAVE Protocol

The LEAVE protocol is comprised of two phases:

1. Find the computer that owns the smallest hyper-
cube address among the leaving computer’s neigh-
boring addresses. Let A denote the leaving
computer and amin denote the smallest hypercube
address in NeðAÞ. The IP address that amin is
mapped to in the routing table is the computer with
the smallest hypercube address.

HUANG ET AL.: PEERCLUSTER: A CLUSTER-BASED PEER-TO-PEER SYSTEM 1115

Fig. 8. An example of the JOIN protocol.

2. Give the computer found in Phase 1 the leaving
computer’s addresses and update the related rout-
ing tables. Let B denote the computer found in
Phase 1. Then, A will send a Leave Request (LRQ)
message to B, giving all A’s hypercube addresses
and routing information. Based on the LRQ message,
B will update its routing table accordingly and
notify its neighboring computers of the mapping
from its newly incorporated hypercube addresses to
its IP address. In addition, B will add 1 to the
remaining free address value of the subtree contain-
ing A. B will also send the Increase Free Address
(IFA) message to its ascendant addresses defined in
the assigned tree. Finally, computer B returns a Leave
Confirm (LCF) message to A and completes the
LEAVE process.

Example 3.2. Given the routing tables of blackcircle.net and

greycircle.net in Fig. 8c, suppose that greycircle.net in
Fig. 9a is going to leave the system. The LEAVE protocol

first searches the routing table to find the smallest
neighboring hypercube address, i.e., 00000. Then, accord-
ing to the IP address that the hypercube address 00000 is

mapped to, greycircle.net sends an LRQ message to
computer 140.112.17.53, as shown in Fig. 9a. Based on the
information included in the LRQ message, blackcircle.net

takes over the hypercube addresses 00001, 00011, 00101,
and 00111 as its alias addresses, updates its routing table,

as shown in Fig. 6. It also notifies its neighboring
computers of the mapping from its newly incorporated
hypercube addresses to its IP address, as shown in Fig. 9b.

Finally, blackcircle.net returns an LCF message to grey-
circle.net and terminates the LEAVE process.

3.2.3 The SEARCH Protocol

To resolve a query efficiently in PeerCluster, we have

devised a SEARCH protocol, which consists of three phases:

1. Route the query message to a computer in the
corresponding interest cluster. Let A denote the
computer that starts the query search and IA denote
the interest cluster of A. Let IQ denote the interest
topic that the query relates to. If IA ¼ IQ, then A is
the computer needed in Phase 1. However, if
IA 6¼ IQ, A will route the query message to some

computer in IQ that owns the hypercube address
with prefix½IQ� and has the postfix of A’s primary
address.

2. Using the computer found in Phase 1, broadcast the
query message to other computers in its interest
cluster. Let B denote the computer found in Phase 1
and IB denote the interest cluster of B. Upon receipt
of the query message routed from A, B will broad-
cast the query message to other computers in IB by
the Proc_Broadcast procedure with the parameter
subq ¼ SL (the search limit specified by the user).

3. Resolve the query and return the query results to
the computer that issued the query search. In this
phase, each computer that receives the query
message will look up its local database to resolve
the query and return the results to A.

Example 3.3. Suppose blackcircle.net in Fig. 10 wants to
issue a query for topic I5. Since blackcircle.net does not
reside in the interest cluster I5, it will route the query
message to the hypercube address 11100 via the path
00000�!00100�!01100�!11100 according to the Pro-
c_Route procedure described in Section 2. Upon receiv-
ing the query message sent from blackcircle.net,
whitesquare.net will broadcast the query message to
other computers in I5. However, being the only
computer in I5, whitesquare.net will look up its local
database immediately to resolve the query and return
the query results to blackcircle.net.

3.2.4 Discussion

In our scenario, a user picks a cluster to join. If the cluster
selection is not ideal, the system will still work, but at a low

1116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 9. An example of the LEAVE protocol.

Fig. 10. An example of the SEARCH protocol.

upload rate. When there are many misclassified peers in a
system, its performance will be degraded. We have there-
fore designed a penalty mechanism that will restrict a peer’s
download rate if it upload rate is too low. In addition, the
system will recommend that the user should join another,
more suitable, cluster.

As mentioned earlier, the structure of PeerCluster allows
peers the flexibility of using all-to-all broadcast schemes to
exchange file indexes [7]. In this case, the peer delivers the
newly added or removed file indexes to other peers
periodically via an all-to-all broadcast mechanism. Conse-
quently, a peer knows what new files have been published
in the system recently. In contrast, a peer in a traditional
P2P system is usually unaware of recently published files,
and a keyword-based search mechanism is used to query
corresponding files.

3.3 Scalability

In this section, we address the scalability issue of
PeerCluster. In Section 3.3.1, we describe a protocol, referred
to as Cluster Extension, that intelligently extends the capacity
of an interest cluster according to the address utilization
rate of its neighboring clusters. In Section 3.3.2, we discuss
how to enlarge the system when there is no additional space
to extend the capacity of the interest cluster using the
Cluster Extension protocol.

3.3.1 Cluster Capacity Extension

To extend the capacity of an interest cluster, we devised the
following Cluster Extension protocol. Assume that a com-
puter, Cx, wants to join interest cluster IA, which is already
full. Let computer CA be a member of IA and receive the
JRQ message from Cx. To accommodate the incoming
computer, the interest cluster IA extends its capacity in
three phases:

1. Query the address utilization rates of neighboring
clusters. Let IA have r neighboring clusters,
I1 . . . Ir and computers C1 . . .Cr maintain the low-
est internal addresses in clusters I1 . . . Ir, respec-
tively. To query the address utilization rates of
neighboring clusters, CA sends a Space Request
Query (SRQ) message to all its neighboring
clusters. Let IB be one of IA’s neighbors and CB
maintain the lowest internal address in IB. When
CB receives an SRQ message from CA, it calculates
its address utilization rate as

RateutilizationðIBÞ ¼
NumassignedðIBÞ

1
2NumðIBÞ

;

where NumassignedðIBÞ is the number of assigned
addresses in IB and NumðIBÞ is the size of IB.
NumassignedðIBÞ ¼ NumðIBÞ �NumfreeðIBÞ, where
NumfreeðIBÞ is the remaining free address value of
IB. The result is then sent to IA with a Space Confirm
(SC) message.

2. Choose a neighboring cluster for borrowed space. From
the neighboring clusters, CA chooses the one with
the smallest address utilization rate, but that rate
must be lower than a predefined threshold, �. If one
of IA’s neighbors satisfies these conditions, the

system goes to the next phase. However, if none of
IA’s neighbors satisfy these conditions, it is neces-
sary to extend the system’s capacity.

3. Split-combine the borrowed space. Let CA choose IB
from all its neighboring clusters for the borrowed
space. CA then sends a Split Space Request Query
(SSRQ) message to CB. Upon receipt of the message,
CB separates the space owned by IB into two
subspaces according the highest bit of internal
address. The subspace whose highest bit of internal
address is one, is called the high space; the other is
called low space. The high space is the borrowed
space. Computers already assigned to the high space
will be moved to the low space. They will send a JRQ
message via their neighbors to rejoin to the system.
The computer assigned to the borrowed space does
not execute the move function immediately. This is
executed when the address that is still being used by
computers of other clusters is assigned by the new
owner of the borrowed space. Finally, CB sends a
Split Space Confirm (SSC) message back to CA,
which then chooses an address from the borrowed
space and sends it to CX.

For example, let a computer, A, belong to IA. Suppose A
receives a JRQ message and knows that IA is full. We
assume that IB and IC are the neighboring clusters of IA,
and that computers B and C are the lowest internal
addresses in IB and IC , respectively. Computer A will send
an SRQ message to computers B and C. In addition, we
assume that the sizes of clusters IB and IC are both 32, and
that the number of peers in them is 13 and 10, respectively.
The utilization rate of IB, RateutilizationðIBÞ, is calculated by
B and the value is 0.8125. RateutilizationðICÞ is calculated by
C and the value is 0.625. Computers B and C return the
utilization rates to A, and IA chooses IC to extend its cluster
address. Then, computer A sends the SSRQ message to
computer C. Thus, computer C will empty the high space
and loan it IA.

In Phase 2, the threshold � indicates the degree of
popularity of the cluster. In our experiments, � is 0.95.
When the utilization rate is larger than �, the cluster is
probably growing and will soon need a larger space. Note
that the value of the threshold depends on the applications
and is determined empirically. When a cluster grows
quickly, the value will be lowered to leave more room for
growth.

Though the address space released from a loose cluster can
be reassigned to another cluster, the cluster address space of
the latter will be partitioned. Therefore, when the system
restores, the cluster address space can be compacted for the
system to regenerate a new cluster address space region.

By exploiting the utilization rate and the popularity
threshold, the cluster can gather the appropriate free space
to extend itself. However, if the cluster cannot find the
appropriate space from neighboring clusters, system exten-
sion will be performed.

3.3.2 System Extension

When a cluster cannot find a appropriate space to extend
itself, or the system is full, the system’s size will be scaled

HUANG ET AL.: PEERCLUSTER: A CLUSTER-BASED PEER-TO-PEER SYSTEM 1117

up by adding bits to its address. Consequently, all clusters
double in size.

Note that PeerCluster is a structural system that employs
extra effort to maintain its architecture, such as an alias list
and a neighbor list. Therefore, when the address bits are
extended by one bit, the entries in the neighbor list increase
by one bit in every address and the capacity of the assigned
tree doubles. To reduce the influence of the system
extension, we use the following method to notify all
participant computers that the system capacity has been
extended. Every participant computer maintains a time-
stamp, called the extension time, which records the time of
the last address extension and is added to the message.
When a receiver receives the message, it will compare its
own extension time to that of the sender. If they are not the
same and the sender’s extension time is more recent than
the receiver’s, the receiver extends the address bits. This
method avoids broadcasting and reduces the influence of
the system extension.

3.4 Support of Multiple Interests

Next, we consider the case when a participant computer
chooses multiple topics as its interests. Recall that the interest
cluster in which each computer participates is distinguished
by its hypercube address(es). Therefore, to allow one
participant computer to join multiple interest clusters, we
extend the participant computer of PeerCluster to hold
multiple sets of hypercube addresses in accordance with the
interest clusters. For example, to allow the greycircle.net in
Fig. 11 to join interest clusters I0 and I5, we maintain two sets
of hypercube addresses (i.e.,f00001; 00011; 00101; 00111gand
f11101; 11111g) and the corresponding routing tables in
greycircle.net, as shown in Fig. 11.

The JOIN, LEAVE, and SEARCH protocols remain
unchanged. To join the interest clusters I1; . . . Ij, a partici-
pant computer, A, just sends multiple JRQ messages with

the corresponding information of I1; . . . Ij to the system.
Following the protocol in Section 3.2, A will be assigned
multiple sets of hypercube addresses and then allowed to
join the interest clusters I1; . . . Ij. The conditions for a
participant computer to search or leave the system are
analogous.

4 PERFORMANCE ANALYSIS

To assess the performance of PeerCluster, we derive the
theoretical bounds of the number of messages sent in the
JOIN, LEAVE, and SEARCH protocols in Appendix A. A
complexity comparison between PeerCluster and existing
decentralized/structured systems is provided. In Section 4.1,
we describe a simulation model to compare the query
efficiency of Gnutella and PeerCluster, using the random
walker method of Gnutella [15] and the random walker
method of PeerCluster. The experimental results are given in
Section 4.2.

4.1 Simulation Model

To further explore the superiority of PeerCluster in terms of
query efficiency, we compare it with Gnutella by simulation.
We present the simulation model in this section.

As described in Section 1, PeerCluster is designed to
exploit the scenario where, at any given time, a user is
usually only interested in a few topics and tends to issue
queries and share collections about those topics. To
investigate this phenomenon, we exploited the data of a
Web directory search engine to form the interest groups and
their keyword set. This data set was collected from the
directory names and their subdirectory names in the Open
Directory Project (ODP) [1]. In addition, we also gathered
the number of items contained in the directory and the
subdirectory. In our experiment, a directory name is an
interest group, and its subdirectory names are the keywords
of the interest group. Moreover, the popularity of the
interest groups and the keywords depends on the number
of items in the directory. Consequently, the replication of a
keyword is relative to its popularity. The more popular the
keyword is, the more replicas there are in the system.

The simulation model consists ofN participant computers,
each of which is interested in one major topic selected from
the jIj interest topics according to its popularity. The number
of files kept by one participant computer is given by a normal
distribution with a mean file number of 340 and a variance of
50. Of the files kept by a participant computer, 80 percent
relate to the topic that is the user’s major interest, whereas
20 percent are distributed over other interest topics according
to their popularity. The number of queries issued by a
computer follows a Poisson distribution with a mean query
rate of 9:86� 10�3 (query/second) [29]. Similarly, the query
topic follows the 80/20 distribution, i.e., 80 percent of the
queries are about the computer’s major interest, and the other
20 percent are about other interest topics.

In the model that simulates the Gnutella network
topology, the number of links per node is set to 4, which
is the default setting of the Gnutella system [20]. For both
Gnutella and PeerCluster, a search limit, SL, is used to limit
the search range of a query. In Gnutella, SL plays the same
role as TTL used in flooding query messages. In PeerCluster,

1118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 11. Support of multiple interests.

SL is used as described in Section 3.2. Table 1 provides a
summary of the parameters used in the simulation model.

4.2 Experimental Results

The performance metric used in our experiments is query
efficiency, which is defined as the ratio of the number of files
contained in the query results to the number of query
messages sent to resolve a query. We compare the query
efficiency of Gnutella and PeerCluster, using the random
walker method of Gnutella and the random walker method
of PeerCluster by varying the system parameters SL, jIj. The
experimental results are given in Sections 4.2.1, 4.2.2, and
4.2.3. In Section 4.2.4, we empirically measure the numbers
of messages sent in the JOIN and LEAVE protocols under
various levels of address utilization. In Section 4.2.5, we
empirically measure the address utilization in the JOIN and
LEAVE protocols under various system sizes.

4.2.1 Search Limit

In the first experiment, we investigate the performance of
PeerCluster by varying the SL parameter. The simulation
results in Fig. 12a show that PeerCluster significantly
outperforms Gnutella in terms of query efficiency. Specifi-
cally, the improvement of query efficiency over Gnutella
increases from 10.76 times to 16.17 times as the value of SL
increases from 2 to 6. This can be explained as follows: As
the value of SL increases, the number of messages sent to
resolve a query in Gnutella grows exponentially on the
base 4 (i.e., the number of links per node), whereas in
PeerCluster the base is 2. Although Gnutella incurs a higher
cost than PeerCluster to resolve a query, it does not obtain an
equivalent return of query results. The reason is that, in
Gnutella, not all computers reached by the query messages
share the same interest topic. In contrast, by grouping
participant computers into various interest clusters in
PeerCluster, we can obtain an equivalent, or even better,
return of query results. It can be seen from Fig. 12a that the
query efficiency of PeerCluster increases as the value of SL
increases, whereas the query efficiency of Gnutella decreases.

4.2.2 Number of Interest Topics

The second experiment examines the performance of
PeerCluster by varying the number of interest topics. The
simulation results are shown in Fig. 12b, where, as the
number of interest topics increases, the query efficiency of
both Gnutella and PeerCluster drops. Note that when the
number of interest topics increases, the computers that can
be reached by Gnutella within the same search limit share an

increasing number of different interest topics. Therefore,
within the same search limit in Gnutella, there are fewer files
that match the query. On the other hand, when interest
topics increase in PeerCluster, the number of the intercluster
connections also increases. Thus, within the same search
limit in PeerCluster, there are more query messages sent. The
query efficiency of PeerCluster outperforms that of Gnutella by
margins from 8.08 times to 15.65 times as the value of an
interest topic varies from 4 to 12.

We also compare PeerCluster with Gnutella system when

both are implemented with the random walker method

(RAWK). From the results shown in Fig. 12b, it can be seen

that with the RAWK method, the query efficiency of

PeerCluster is still better than that of Gnutella.
Note that, according to the Fig. 12b, the query efficiency of

the RAWK search method is outperformed by the blind

search in PeerCluster. However, if we increase the TTL value

of the RAWK method, its query efficiency improves. Indeed,

the blind search and the RAWK methods have different

advantages: the response time of blind search is faster,

whereas the search radius of RAWK is larger. Hence,

RAWK is more suitable for infrequent keyword searches,

and its advantage is not prominent for popular keywords.

4.2.3 Skew of Interest Popularity

To model data skew, we assume that there are jIj interest

topics in the simulation model. The popularity of these jIj
topics follows a Zipf-like distribution with the parameter �

from 0:2 to 1 (i.e., the popularity each interest topic Ij is set

to j��PjIj
k¼1

k��
).

We now assess the performance of PeerCluster by varying
the skew of the interest popularity. As presented in Fig. 13a,
with skewed interest popularity, the query efficiency of
PeerCluster is better than that of Gnutella. The reason is very
similar to the one in the second experiment. When the
interest popularity becomes more skewed, the computers
that can be reached by Gnutella within the same search limit
share fewer different interest topics. Therefore, within the
same search limit in Gnutella, there are more files matching
the query, and in turn, the query efficiency increases.
Nevertheless, PeerCluster still outperforms Gnutella regard-
less of the skew of interest popularity. Similarly, the query
efficiency of Gnutella using the RAWK search protocol is also
affected by the interest popularity. In contrast, PeerCluster
using RAWK is stable.

HUANG ET AL.: PEERCLUSTER: A CLUSTER-BASED PEER-TO-PEER SYSTEM 1119

TABLE 1
Parameters Used in the Simulation Model

Fig. 12. (a) Query efficiency under various Search Limits. (b) Query

efficiency under various skews of interest popularity.

4.2.4 Number of Messages Sent

In the fourth experiment, we measure the numbers of
messages sent in the JOIN and LEAVE protocols under
various levels of address utilization. As shown in Fig. 13b,
the number of messages sent in JOIN remains almost the
same when address utilization is less than 50 percent,
whereas it increases linearly when the utilization increases
from 50 percent to 100 percent. The reason is that, when the
address utilization is under 50 percent, each participant
computer owns two or more hypercube addresses. Thus, a
joining computer can acquire a hypercube address easily.
However, as address utilization increases from 50 percent to
100 percent, the number of participant computers owning
multiple hypercube addresses decreases linearly. Therefore,
the number of messages sent in Phase 3 of the JOIN protocol
increases linearly. Also, the number of messages sent in the
LEAVE protocol decreases slightly as address utilization
decreases, which agrees with Theorem 3.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a cluster-based peer-to-
peer system, called PeerCluster, for sharing data over the
Internet. To guarantee that the structure of the interest
clusters will not be altered by arbitrary node insertions/
deletions, we devised JOIN and LEAVE protocols for
PeerCluster. The complexities of these protocols were
derived. In addition, we augmented PeerCluster with a
system recovery mechanism to make it robust against
unpredictable computer/network failures. Using an event-
driven simulation, we evaluated the performance of
PeerCluster by varying several system parameters. The
experimental results showed that PeerCluster achieves
superior query efficiency, while providing the desired
functionality of keyword-based search.

In the future, as an extension of this study, we will explore
dynamic interest groups and incorporate a feature hierarchy.
In PeerCluster, the interest group is predefined and therefore
fixed. However, as fashions change, so do interest groups.
Therefore, the dynamic interest groups should be designed to
be more adaptive to changing interests.

APPENDIX A

THEORETICAL PROPERTIES OF PEERCLUSTER

Let N denote the system capacity of PeerCluster, n denote
the number of online computers currently in the system,
and jIj denote the number of interest topics. First, we derive
the number of a participant computer’s neighboring

computers and the number of messages sent in intercluster
routing in Lemma 1 and Lemma 2, respectively.

Lemma 1. The mean number of neighboring computers that one
participant computer in PeerCluster has is equal to lgN .

Proof of Lemma 1. Since the system capacity is N and there
are currently n online computers in the system, then the
mean number of hypercube addresses owned by one
participant computer is equal to N=n. According to the
properties of hypercube topology described in Section 2,
one hypercube address in QlgN has lgN neighboring
hypercube addresses; therefore, the mean number of
neighboring computers that one participant computer in
PeerCluster has equals lgN ¼ N=n�lgN

N=n . tu
Lemma 2. Intercluster routing takes OðnN lg jIjÞ messages.

Proof of Lemma 2. From Section 3.2, we can see that the
length of the path for intercluster routing depends on the
address prefixes of the source and destination interest
clusters. However, as described in Section 3.1, the
address prefix of each interest cluster is determined by
the Huffman tree constructed based on the interest
popularity. To determine the length of the path for
intercluster routing, we consider two extreme cases of
the distribution of interest popularity: 1) If the popularity
of all interest clusters is equal, the Huffman tree will be
balanced with the height equal to lg jIj. Then, we can
obtain the mean length of the path for intercluster
routing as follows:

1

jIj �
Plg jIj

i¼1 i � Crðlg jIj; iÞ
jIj � 1

� jIj ¼ jIj
2ðjIj � 1Þ lg jIj ’ Oðlg jIjÞ;

ð1Þ

where Cr is the Combination Formula. 2) If the popularity
of the interest clusters is extremely skewed, then the
Huffman tree will have the height jIj � 1. Then, we can
determine the average length of the path for intercluster
routing as follows:

1

2jIj�1
þ
XjIj�2

i¼0

2i

2jIj�1
� 2jIj�1 � 1

2jIj�1 � 2i

¼ 1

2jIj�1
þ 2jIj�1 � 1

2jIj�1

XjIj�2

i¼0

1

2jIj�i�1 � 1
:

ð2Þ

Note that when jIj 	 8, the value of (1) will be larger
than that of (2). Therefore, we have Oðlg jIjÞ for the mean
length of the path for intercluster routing. Since the mean
number of hypercube addresses owned by each partici-
pant computer is N=n, the number of messages sent for
intercluster routing is OðnN lg jIjÞ. tu
With Lemma 1 and Lemma 2, we can derive the

complexities of the number of messages sent in the JOIN,
LEAVE, and SEARCH protocols in Theorems 1, 2, and 3,
respectively.

Theorem 1. It takes OðnN lg jIj þ lgNÞ messages for one
computer to join PeerCluster if the address utilization of
PeerCluster is kept under 50 percent.

Proof of Theorem 1. Recall that the JOIN protocol consists
of four phases. Phase 1 takes Oð1Þ messages. Phase 2,

1120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 13. (a) Query efficiency under various skews of interest popularity.

(b) Numbers of messages sent under various address utilizations.

based on Lemma 2, takes OðnN lg jIjÞ messages. Phase 4,
according to Lemma 1, takes the mean of lgN messages.
The number of messages sent in Phase 3 depends on the
utilization level of the hypercube addresses. Let � denote
the number of messages sent in Phase 3. In the worst
case, � will be the size of the largest interest cluster when
the joining computer would like to join the largest
interest cluster and search all over that cluster. However,
as shown in Section 4.2.4, if we keep the address
utilization under 50 percent, we are able to approximate
" to a constant. Therefore, we have the complexity
OðnN lg jIj þ lgNÞ for the number of messages sent in the
JOIN protocol. tu

Theorem 2. The mean number of messages sent in the LEAVE
protocol is equal to lgN .

Proof of Theorem 2. Theorem 2 follows from Lemma 1
and the fact that the mean number of messages sent in
Phase 2 of the LEAVE protocol is equal to lgN . tu

Theorem 3. Let SL denote the search limit specified by the user.
It takes OðnN ðlg jIj þ 2SLÞÞ messages to resolve a query in
PeerCluster.

Proof of Theorem 3. In Phase 1 of the SEARCH protocol, the
intercluster routing takes OðnN lg jIjÞ messages according
to Lemma 2. In Phase 2, since the query messages are
only broadcast to the computers in the subhypercube
QSL, the messages sent for intracluster broadcasting are
OðnN � 2SLÞ. Overall, it takes OðnN ðlg jIj þ 2SLÞÞmessages to
resolve a query in PeerCluster. tu

To provide more insight into PeerCluster, we compare
PeerCluster with several existing decentralized/structured peer-
to-peer systems (i.e., Chord [26], Pastry [21], and CAN [18]) in
Table 2, where b is a configuration parameter in Pastry with a
typical value of 4 and d is a parameter in CAN, specifying the
dimensions of Cartesian coordinate space. It is observed that
PeerCluster is the only system that supports the functionality
of keyword-based search, whereas other systems only
support the fundamental lookup service. In addition,
PeerCluster performs better than other systems in terms of
the Join and Leave operations. This advantage becomes more
apparent as the number of keys that need to be transferred
during the Join and Leave operations in other systems
increases.

APPENDIX B

SYSTEM RECOVERY OF PEERCLUSTER

Under normal conditions, the integrity of the interest cluster
structures can be guaranteed by the JOIN and LEAVE

protocols described in Section 3.2. However, due to
unpredictable network/computer failures, one participant
computer could suddenly become unreachable. To ensure
that PeerCluster is robust against such failures, we devised a
system recovery mechanism.

The system recovery mechanism requires that every
hypercube address be supervised by another hypercube
address, called the supervisor address. Let ai denote one
hypercube address. Then, the supervisor address aj of ai is
defined as the smallest hypercube address in NeðaiÞ. For
example, the supervisor address of 00011 is 00001, since
00001 is the smallest hypercube address in Neð00011Þ ¼
f00010; 00001; 00111; 01011; 10011g. By this definition, every
hypercube address will have one supervisor address. To
detect failures, each computer that owns a supervisor
address is required to periodically ping the computer that
owns the supervised address to check that it is alive. Once a
failure is detected, the following system recovery procedure
should be followed:

1. Incorporate the unreachable address. Let au denote
the unreachable hypercube address and A denote
the computer that owns the supervisor address of au.
Once au is detected as unreachable, A will incorpo-
rate the unreachable address au into A (i.e.,
addrðAÞ [faug).

2. Update the related routing tables. After the in-
corporation of the unreachable address au, the new
set of neighboring hypercube addresses of A will
become

S
ai2addrðAÞ[faugNeðaiÞ � ðaddrðAÞ [faugÞ. To

maintain the correctness of the related routing
tables, computer A will notify its neighboring
computers of the mappings from its new neighbor-
ing addresses to its IP address accordingly and, at
the same time, bring back their IP addresses to
update its own routing table.

Example B.1. As shown in Fig. 14a, there are currently three
participant computers in the system. The routing tables
of the computers blackcircle.net and 163.17.233.15 are
shown on the right of the figure. Assume that the
computer 128.15.114.21 suddenly becomes unreachable
due to network failure. Since blackcircle.net owns the
hypercube address 010, which is the supervisor address
of 110, it will detect this failure and initiate the system
recovery procedure immediately. In the first step, black-
circle.net will incorporate the hypercube address 110 into
its alias addresses. Thereafter, in the second step,
blackcircle.net will check every neighboring hypercube
address of the incorporated address 110 (i.e., 010, 100,
and 111) and find that 111 is the new neighboring

HUANG ET AL.: PEERCLUSTER: A CLUSTER-BASED PEER-TO-PEER SYSTEM 1121

TABLE 2
Comparison between PeerCluster and Other Decentralized/Structure Systems

address. Finally, blackcircle.net will send its IP address

to the computer that owns address 111 via the path

000�!001�!011�!111 and bring back the correspond-

ing IP address of 111 to update its own routing table, as

shown in Fig. 14b.
In the recovery mechanism, a failed hypercube

address is managed by its supervisor address. Each
computer that owns a supervisor address is required to
periodically ping the computer that owns the supervised
address to it is working. Note that information exchange
is frequent between peers in P2P systems. This behavior
supports the probing scheme. Therefore, the probing
scheme does not have to be performed frequently.

In addition, a failed hypercube address is recovered
by its supervisor address, and its neighbors will map the
failed hypercube address to the supervisor address’s IP
address of the failed address. Note that the system
recovery procedure recovers one hypercube address at a
time. If a computer owns multiple hypercube addresses
becomes unreachable, or multiple participant computers
fail simultaneously, multiple runs of the system recovery
procedure will be needed.

ACKNOWLEDGMENTS

The work was supported in part by the National Science

Council of Taiwan, R.O.C., under Contracts NSC93-2752-

E-002-006-PAE.

REFERENCES

[1] Open Directory Project (ODP), http://dmoz.org/, 1998.
[2] The Discussion Board of eDonkey, http://www.cyndi.idv.tw/

forum/index.php, 2001.
[3] K. Aberer, “P-Grid: A Self-Organizing Access Structure for P2P

Information Systems,” Proc. Int’l Conf. Cooperative Information
Systems, 2001.

[4] L. Bhuyan and D.P. Agrawal, “Generalized Hypercube and
Hyperbus Structures for a Computer Network,” vol. 33, pp. 323-
333, 1984.

[5] T.F. Chan and Y. Saad, “Multigrid Algorithms on the Hypercube
Multiprocessor,” IEEE Trans. Computers, vol. 35, no. 11, pp. 969-
977, Nov. 1986.

[6] Y. Chawathe, S. Ratnasamy, B.L.N. Lanham, and S. Shenker,
“Making Gnutella-Link P2P Systems Scalable,” Proc. SIGCOMM
’03, 2003.

[7] M.S. Chen, P.S. Yu, and K.L. Wu, “Optimal NODUP All-to-All
Broadcasting Schemes in Distributed Computing Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 5, pp. 1275-1285, 1994.

[8] Clip2.com, The Gnutella Protocol Specification V0.4, http://
www9.limewire.com/developer/gnutella_protocol_0.4.pdf, Mar.
2001.

[9] E. Cohen, A. Fiat, and H. Kaplan, “Associative Search in Peer to
Peer Networks: Harnessing Latent Semantics,” Proc. IEEE IN-
FOCOM ’03, 2003.

[10] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. MIT Press/McGraw-Hill Book Company, 1990.

[11] A. Crespo, “Routing Indices for Peer-to-Peer Systems,” Proc. 22nd
Int’l Conf. Distributed Computing Systems (ICDCS), 2002.

[12] N. Gunther, “Hypernets—Good (G)news for Gnutella,” http://
www.perfdynamics.com/Papers/Gnews.html, 2002.

[13] F. Harary, Graph Theory. Mass.: Addison-Wesley, 1969.
[14] J. Liebeherr and T.K. Beam, “HyperCast: A Protocol for

Maintaining Multicast Group Members in a Logical Hypercube
Topology,” Proc. First Int’l Workshop Networked Group Comm. (NGC
’99), 1999.

[15] Q. Liv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Network,” Proc. ACM
SIGMETRIC ’02, 2002.

[16] Napster Inc., Napster Website, http://www.napster.com, 2006.
[17] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I.

Brunkhorst, and A. Lser, “Super-Peer-Based Routing and Cluster-
ing Strategies for RDF-Based Peer-to-Peer Networks,” Proc. 12th
Int’l World Wide Web Conf. (WWW ’03), 2003.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” Proc. SIGCOMM ’01,
2001.

[19] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” Proc. ACM/IFIP/USENIX Middleware Conf., 2003.

[20] J. Ritter, “Why Gnutella Can’t Scale? No, Really,” http://
www.darkridge.com/jpr5/doc/gnutella.html, Feb. 2001.

[21] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
18th IFIP/ACM Int’l Conf. Distributed Systems Platforms (Middleware
’01), 2001.

[22] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “A Scalable and
Ontology-Based P2P Infrastructure for Semantic Web Services,”
Proc. Second Int’l Conf. Peer-to-Peer Computing, pp. 104-111, 2002.

[23] K. Sripanidkulchai, “The Popularity of Gnutella Queries and
Its Implications on Scalability,” http://www.cs.cmu.edu/
kunwadee/research/p2p/gnutella.html, Feb. 2001.

[24] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content
Location and Retrieval in Peer-to-Peer Systems by Exploiting
Locality in Interests,” Proc. ACM SIGCOMM ’01, 2001.

[25] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Systems,”
Proc. IEEE INFOCOM ’03, 2003.

[26] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. SIGCOMM ’01, 2001.

[27] G. Vrana, Peering through the Peer-to-Peer Fog, EDN Access
(www.ednmag.com), 2001.

[28] B. Yang and H. Garcia-Molina, “Comparing Hybrid Peer-to-Peer
Systems,” Proc. Very Large Data Bases Conf. (VLDB), 2001.

[29] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer
Systems,” Proc. 22nd Int’l Conf. Distributed Computing Systems
(ICDCS), 2002.

[30] B.Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerant Wide Area Location and Rout-
ing,” Technical Report UCB/CSD-01-1141, Univ. of California at
Berkeley, 2001.

1122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

Fig. 14. An example scenario of the system recovery mechanism.

Xin-Mao Huang received the MS degree from
the Electrical Engineering Department at the
National Taiwan University, Taipei, Taiwan,
R.O.C., in 1998. He is currently a PhD student
in the same department. His research interests
include data mining, distributed systems, and
multimedia applications.

Cheng-Yue Chang received the MS and PhD
degrees in electrical engineering at the National
Taiwan University in Taiwan. He is now an
advanced researcher at Arcadyan Incorporation.
His research interests include wireless home
networking, audio/video streaming, and content
management.

Ming-Syan Chen received the BS degree in
electrical engineering from National Taiwan Uni-
versity, Taipei, Taiwan, and the MS and PhD
degrees in computer, information, and control
engineering from the University of Michigan, Ann
Arbor, MI, in 1985 and 1988, respectively. Dr.
Chen is currently the chairman of the Graduate
Institute of Communication Engineering, and also
a professor in both the Electrical Engineering
Department and the Computer Science and

Information Engineering Department, National Taiwan University. He
was a research staff member at the IBM T.J. Watson Research Center,
Yorktown Heights, New York, from 1988 to 1996. His research interests
include database systems, data mining, mobile computing systems, and
multimedia networking, and he has published more than 200 papers in his
research areas. In addition to serving as a program committee member in
many conferences, Dr. Chen served as an associate editor of IEEE
Transactions on Knowledge and Data Engineering (TKDE) from 1997 to
2001, is currently on the editorial board of the Very Large Data Base
Journal (VLDB), Knowledge and Information Systems Journal (KAIS), the
Journal of Information Science and Engineering, and the International
Journal of Electrical Engineering, and was a Distinguished Visitor of the
IEEE Computer Society for Asia-Pacific from 1998 to 2000, and is also
serving from 2005 to 2007 (invited twice). He served as the international
vice chair for INFOCOM 2005, program chair of PAKDD-02, program
cochair of MDM-03, program vice-chair of IEEE ICDE-06, IEEE ICDCS-
05, ICPP-03, and VLDB-2002, and many other program chairs and
cochairs. He was a keynote speaker on Web data mining in the
International Computer Congress in Hong Kong, 1999, a tutorial speaker
on Web data mining in DASFAA-1999 and on parallel databases in the
11th IEEE ICDE in 1995, and also a guest coeditor for IEEE TKDE on a
special issue for data mining in December 1996. He holds, or has applied
for, 18 US patents and seven ROC patents in the areas of data mining,
Web applications, interactive video playout, video server design, and
concurrency and coherency control protocols. He is a recipient of the NSC
(National Science Council) Distinguished Research Award, Pan Wen
Yuan Distinguished Research Award, and K.-T. Li Research Penetration
Award for his research work, and also the Outstanding Innovation Award
from IBM Corporate for his contribution to a major database product. He
also received numerous awards for his research, teaching, inventions,
and patent applications. Dr. Chen is a fellow of the IEEE and the IEEE
Computer Society, and a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUANG ET AL.: PEERCLUSTER: A CLUSTER-BASED PEER-TO-PEER SYSTEM 1123

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

