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Partitioning

Interface

Information

Module 1 Module 2 Module 3 Module n

  System design

Each subsystem can be designed independently speeding up

 Decomposition scheme has to minimize the interconnections

Decomposition is carried out hierarchically until each

Decomposition of a complex system into smaller subsystems.

 the design process.

 between the subsystems.

 subsystem is of managable size.
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Partitioning of A Circuit

�

Input size � ��

(a)

(b)
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Size � � �� Size � � �� Size � � �	
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Partitioning at di�erent levels
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Problem Formulation

�

�� Interconnections between partitions


Obj� 

kX

i��

kX
j��

cij� �i �� j
 is minimized

�� Delay due to partitioning


Obj� 
 max
pi�P
�H�pi

 is minimized

�� Number of terminals

Cons� 
 Count�Vi
 � Ti� � � i � k

where�
cij is the cutsize between partitions Vi and Vj�

H�pi
 is the number of times a hyperpath pi is cut�

Count�Vi
 is the terminal count for partition Vi�
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Problem Formulation

�

�� Area of each partition


Cons� 
 A
min
i � Area�Vi
 � Amax

i � i � �� �� � � � � k

�� Number of partitions


Cons� 
 Kmin � k � Kmax

The partitioning problem at any level or design style deals with

one or more of the above parameters�



Partitioning Methods
• Top-down Partitioning (cutsize only)

– Iterative improvement [KL70, FM82, Kr84, San89]
– Spectral based [HK92, AZ95]
– Clustering method [SU72, NOP87, WC92, SS93, CS93, HK95]
– Network flow based [YW94, YW97]
– Analytical based [RDJ94, LLC95]
– Multi-level [CS93, HB95, AHK97, KA+97, KK99]

• Bottom-up Clustering (delay only)
– Unit delay model [LLT69, CD93]
– General delay model [MBV91, RW93, YW95]
– Sequential circuits with retiming [PKL98, CLW99, CL00]
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Kernighan�Lin Algorithm

�

� It is a bisectioning algorithm

� The input graph is partitioned into two subsets of equal sizes�

� Till the cutsize keeps improving�

� Vertex pairs which give the largest decrease in cutsize

are exchanged

� These vertices are then locked

� If no improvement is possible and some vertices are still

unlocked� the vertices which give the smallest

increase are exchanged

� W� Kernighan and S� Lin� Bell System Technical Journal� �����
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Kernighan�Lin Algorithm

�

Algorithm KL

begin
INITIALIZE���

while� IMPROVE�table� � TRUE � do

�� if an improvement has been made during last iteration	

the process is carried out again
 ��

while � UNLOCK�A� � TRUE � do

�� if there exists any unlocked vertex in A	

more tentative exchanges are carried out
 ��

for � each a � A � do

if �a � unlocked� then

for� each b � B � do

if �b � unlocked� then

if �Dmax � D�a� �D�b�� then

Dmax � D�a� �D�b��

amax � a�

bmax � b�

TENT�EXCHGE�amax� bmax��

LOCK�amax� bmax��

LOG�table��

Dmax � ���

ACTUAL�EXCHGE�table��

end�



Practical Problems in VLSI Physical Design KL Partitioning (1/6)

Perform single KL pass on the following circuit:
KL needs undirected graph (clique-based weighting)

Kernighan-Lin Algorithm



Practical Problems in VLSI Physical Design KL Partitioning (2/6)

First Swap



Practical Problems in VLSI Physical Design KL Partitioning (3/6)

Second Swap



Practical Problems in VLSI Physical Design KL Partitioning (4/6)

Third Swap



Practical Problems in VLSI Physical Design KL Partitioning (5/6)

Fourth Swap
Last swap does not require gain computation



Practical Problems in VLSI Physical Design KL Partitioning (6/6)

Summary
Cutsize reduced from 5 to 3

Two best solutions found (solutions are always area-balanced)
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Drawbacks of K�L Algorithm

�

� K�L algorithm considers balanced partitions only�

� As vertices have unit weights� it is not possible to

allocate a vertex to a partition�

� The K�L algorithm considers edges instead of hyperedges�

� High� O�n�
 complexity�
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Fiduccia�Mattheyses Algorithm

�

This algorithm is a modi�ed version of Kernighan�Lin Algorithm�

� A single vertex is moved across the cut in a single move which

permits handling of unbalanced partitions�

� The concept of cutsize is extended to hypergraphs�

� Vertices to be moved are selected in a way to improve

time complexity�

� A special data structure is used to do this�

� Overall time complexity of the algorithm is O�n�
�

C� M� Fiduccia and R� M� Mattheyses� ��th DAC� ���	�
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Data Structure Used in Fiduccia�Mattheyses Algorithm

Vertex

Vertex
-pmax

+pmax

+pmax

-pmax

IInd Partition

Ist Partition

1 2 n. . . . . . . . .

1 2 . . . . . . . . . n

vertices
List of free

Vertex # #Vertex

#Vertex #Vertex



Practical Problems in VLSI Physical Design FM Partitioning (1/12)

Perform FM algorithm on the following circuit:
Area constraint = [3,5]
Break ties in alphabetical order.

Fiduccia-Mattheyses Algorithm



Practical Problems in VLSI Physical Design FM Partitioning (2/12)

Initial Partitioning
Random initial partitioning is given.



Practical Problems in VLSI Physical Design FM Partitioning (3/12)

Gain Computation and Bucket Set Up



Practical Problems in VLSI Physical Design FM Partitioning (4/12)

First Move



Practical Problems in VLSI Physical Design FM Partitioning (5/12)

Second Move



Practical Problems in VLSI Physical Design FM Partitioning (6/12)

Third Move



Practical Problems in VLSI Physical Design FM Partitioning (7/12)

Forth Move



Practical Problems in VLSI Physical Design FM Partitioning (8/12)

Fifth Move



Practical Problems in VLSI Physical Design FM Partitioning (9/12)

Sixth Move



Practical Problems in VLSI Physical Design FM Partitioning (10/12)

Seventh Move



Practical Problems in VLSI Physical Design FM Partitioning (11/12)

Last Move



Practical Problems in VLSI Physical Design FM Partitioning (12/12)

Summary
Found three best solutions.

Cutsize reduced from 6 to 3.
Solutions after move 2 and 4 are better balanced.



Practical Problems in VLSI Physical Design

FM Algorithm
[Krishnamurthy, 1984]: developed “look-ahead” gain concept, 
where gain is now a vector.
[Sanchis, 1989]: perform “flat” multi-way partitioning, where 
gain considers all possible destinations
[Cong and Lim, 1998]: showed that recursive is way better than 
flat multi-way partitioning, improved flat method
[Dutt and Deng, 1996]: encourages neighboring cell move, 
effective in avoiding cutting clusters
[Hagen et al, 1997]: showed that LIFO bucket works better than 
FIFO
[Hauck and Borriello, 1997]: evaluated all existing FM 
extensions and proposed the “best” combination

Probing Further



Spectral Based Partitioning Algorithms
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D: degree matrix; A: adjacency matrix; D-A: Laplacian matrix

Eigenvectors of D-A form the Laplacian spectrum of G



Some Applications of Laplacian Spectrum
Placement and floorplan

[Hall                 1970]
[Otten 1982]
[Frankle-Karp 1986]
[Tsay-Kuh 1986]

Bisection lower bound and computation
[Donath-Hoffman  1973]
[Barnes                   1982]
[Boppana 1987]

Ratio-cut lower bound and computation
[Hagen-Kahng 1991]
[Cong-Hagen-Kahng 1992]



Eigenvalues and Eigenvectors

If       Ax=λx

then  λ is an eigenvalue of A

x is an eignevector of A w.r.t. λ

(note that Kx is also a eigenvector, for any constant K).
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Spectral Partitioning

• Hall’s Results [1970]
– Given an undirected edge weighted graph G
– Important property about the Laplacian Matrix Q of G
– Eigenvector of the 2nd smallest eigenvalue of Q gives 1-dimensional 

placement of nodes in V
– Sum of the squared length of the edges are minimized
– Under Σ x2==1

• Hagen and Kahng’s Results [1992]
– 2nd smallest eigenvalue of Q is a tight lower bound of ratio-cut
– Derive partitioning from 1-dimensional placement for ratio-cut 

minimization



Practical Problems in VLSI Physical Design EIG Algorithm (1/11)

Perform EIG partitioning and minimize ratio cut cost.
Clique-based graph model: dotted edge has weight of 0.5, and 
solid edge with no label has weight of 0.25.

Hagen-Kahng EIG Partitioning



Practical Problems in VLSI Physical Design EIG Algorithm (2/11)

Adjacency Matrix



Practical Problems in VLSI Physical Design EIG Algorithm (3/11)

Degree Matrix



Practical Problems in VLSI Physical Design EIG Algorithm (4/11)

Laplacian Matrix
We obtain Q = D − A



Practical Problems in VLSI Physical Design EIG Algorithm (5/11)

Eigenvalue/vector Computation



Practical Problems in VLSI Physical Design EIG Algorithm (6/11)

EIG Partitioning



Practical Problems in VLSI Physical Design EIG Algorithm (7/11)

EIG Partitioning (cont)



Practical Problems in VLSI Physical Design EIG Algorithm (8/11)

EIG Partitioning (cont)



Practical Problems in VLSI Physical Design EIG Algorithm (9/11)

EIG Partitioning (cont)



Practical Problems in VLSI Physical Design EIG Algorithm (10/11)

Summary
Good solution found:

{(a,f,d,g,i), (j,b,h,e,c)} is well-balanced and has low RC cost.



Practical Problems in VLSI Physical Design EIG Algorithm (11/11)

Theorem



Practical Problems in VLSI Physical Design

Probing Further
EIG Algorithm

[Chan et al, 1994]: extended EIG to multi-way partitioning, uses 
k-smallest eigenvalues/eigenvectors
[Riess et al, 1994]: use GORDIAN-L placement to derive 
partitioning solution that minimizes ratio-cut
[Alpert and Yao, 1995]: presented a new vertex ordering scheme 
based on eigenvectors
[Alpert and Khang, 1995]: used dynamic programming to split 
vertex ordering and obtain multi-way partitioning
[Li at al, 1996]: studied linear vs quadratic objectives, and 
proposed α-order objective Fα, (1 ≤ α ≤ 2)




