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Partitioning

Partitioning

System design

® Decomposition of acomplex system into smaller subsystems.

@ Each subsystem can be designed independently speeding up
the design process.

® Decomposition scheme has to minimize the interconnections

between the subsystems.

® Decomposition is carried out hierarchically until each

subsystem is of managable size.
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Input size = 48

Cutl =4
Size 1 = 15

Partitioning

Partitioning of A Circuit

Cut2 =14
Size 2 = 16 Size 3 = 17
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System

Partitioning

Partitioning at different levels

Partitioning

Board

Chip
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-~ Partitioning

Problem Formulation

L. Interconnections between partitions:

Oby; - Z Z ¢ij, (1 #7) is minimized

1=1y=1
2. Delay due to partitioning:
Obj, : ma}gc(H (p;))  is minimized

- 8. Number of terminals:

9

Consy : Count(V;) <T;, 1<i:<k

where,

c;j 1s the cutsize between partitions V; and V;.

H(p;) is the number of times a hyperpath p; is cut.

Count(V;) is the terminal count for partition V;.
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s Partitioning

Problem Formulation

L. Area of each partition:
Consy : A™ < Area(V;) < AP i=1,2,... k
2. Number of partitions:

COTLSS . Kmin S k S Kmax

The partitioning problem at any level or design style deals with

one or more of the above parameters.
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Partitioning Methods

* Top-down Partitioning (cutsize only)
wzy — lterative improvement [KL70, FM82, Kr84, San89]
vz) — Spectral based [HK92, AZ95]
— Clustering method [SU72, NOP87, WC92, SS93, CS93, HK95]
zzy — Network flow based [YW94, YW97]
— Analytical based [RDJ94, LLC95]
zz) — Multi-level [CS93, HB95, AHK97, KA+97, KK99]

o Bottom-up Clustering (delay only)
7z) — Unit delay model [LLT69, CD93]
7z) — General delay model [MBV91, RW93, YW95]
— Sequential circuits with retiming [PKL98, CLW99, CL00]



Partitioning

Kernighan-Lin Algorithm

e It is a bisectioning algorithm
e The input graph is partitioned into two subsets of equal sizes.
e Till the cutsize keeps improving,

— Vertex pairs which give the largest decrease in cutsize
are exchanged

— These vertices are then locked

— If no improvement is possible and some vertices are still
unlocked, the vertices which give the smallest

increase are exchanged

W. Kernighan and S. Lin, Bell System Technical Journal, 1970.
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Partitioning

Kernighan-Lin Algorithm

Algorithm KL
begin
INITIALIZE():
while( IMPROVE(table) = TRUE ) do
(* if an improvement has been made during last iteration,
the process is carried out again. *)
while ( UNLOCK(A) = TRUE ) do
(* if there exists any unlocked vertex in A,
more tentative exchanges are carried out. *)
for (eacha € A ) do
if (a = unlocked) then
for(each b € B ) do
if (b = unlocked) then
if (Dy.x < D(a) + D(b)) then
D,.x = D(a) + D(b);
Qmax = 3
bunax = b;
TENT-EXCHGE(amax, bmax);
LOCK(amaxa bmax)?
LOG(table);
Dpox = — Q03
ACTUAL-EXCHGE(table);

end.
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J Kernighan-Lin Algorithm

m Perform single KL pass on the following circuit:
= KL needs undirected graph (cligue-based weighting)

n1
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initial partitioning
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J Third Swap

RENES

pair  FE, — I, E,—1, c(x,y) gain
(a,f) 0—1 15—-15 0 -1
(a, h) 0—1 0.5—-0.5 0 -1
(e.f) 05-25 15—-15 05 3
(e,h) 05—25 05-0.5 0 2
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Fourth Swap

m Last swap does not require gain computation
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J Summary

m Cutsize reduced from 5to 3
= Two best solutions found (solutions are always area-balanced)

i pair  gain(i) > gain(i) cutsize
0 - - - 5
1 (d,c) 2 2 3
2 (b,g) 0 2 3
3 (a,f) -1 | 4
4 (e, h) -1 0 5
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Partitioning

Drawbacks of K-L Algorithm

e K-L algorithm considers balanced partitions only.

e As vertices have unit weights, it is not possible to
allocate a vertex to a partition.

e The K-L algorithm considers edges instead of hyperedges.

e High, O(n?®) complexity.
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Partitioning

Fiduccia-Mattheyses Algorithm

This algorithm is a modified version of Kernighan-Lin Algorithm.

e A single vertex is moved across the cut in a single move which
permits handling of unbalanced partitions.

e The concept of cutsize is extended to hypergraphs.

e Vertices to be moved are selected in a way to improve
time complexity.

e A special data structure is used to do this.

e Overall time complexity of the algorithm is O(n?).

C. M. Fiduccia and R. M. Mattheyses, 19th DAC, 1982.
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Partitioning

Data Structure Used in Fiduccia-Mattheyses Algorithm

+pmax

|st Partition
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J Fiduccia-Mattheyses Algorithm

m Perform FM algorithm on the following circuit:
= Area constraint = [3,5]
= Break ties in alphabetical order.

2o -
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J Initial Partitioning

= Random initial partitioning Is given.
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J Gain Computation and Bucket Set Up

cell ¢: cis contained in net ny = {a,c, e}, nos = {b,c,d}, and ng =
{c, f,e}. m3 contains ¢ as its only cell located in the left partition, so
F'S(c) = 1. In addition, none of these three nets are located entirely in
the left partition. So, T'E(c) = 0. Thus, gain(c) = 1.

Pmax | 3 3
2 @ =0,
(¢, 1 1
[ ] 0 @ 0 F®
0 @ -1 -1
_:2 iI -2 -2
(@~ -Pmax |-3| | EFT -3] RIGHT
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J First Move

RENES

move 1: From the initial bucket we see that both cell ¢ and e have the
maximum gain and can be moved without violating the area constraint.
We move e based on alphabetical order. We update the gain of the
unlocked neighbors of e, N(e) = {a,c, g, f}, as follows: gain(a) =
FS(a)—TE(a) =0—-1=—1, gain(c) =0—1= —1, gain(g) =
1-1=0,gain(f)=2—-0=2.

3 3
2 2 )
1 D 1 )
0 @) 0 —(h)
iinORONNE
-2 -2
-3 -3
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JSecond Move

move 2: f has the maximum gain, but moving f will violate the area
constraint. So we move d. We update the gain of the unlocked neigh-
bors of d, N(d) = {b,c, f}, as follows: gain(b) = 0 — 0 = 0,
gain(c) =1—-1=0,gain(f)=1—-1=0.

3 3
2 2
1 1
0 @© [0FO®-OE®
1@ 1
2 2
3 3
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| Third Move

move 3: Among the maximum gain cells {g, ¢, h, f, b}, we choose b
based on alphabetical order. We update the gain of the unlocked neigh-
bors of b, N (b) = {c} as follows: gain(c) =0—1= —1.

3 3

2 2

1 1

09 0 F—-
-1 -1

-2 -2
-3 -3
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J Forth Move

move 4. Among the maximum gain cells {g, i, f}, we choose ¢ based
on the area constraint. We update the gain of the unlocked neighbors
of g, N(g) = {f, h}, as follows: gain(f) =1 —2 = —1, gain(h) =

0—1=-1.
3 3
2 2
1 1
0 0
- EIR0R0
-2 -2
-3 -3
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| Fifth Move

move 5: We choose a based on alphabetical order. We update the gain
of the unlocked neighbors of a, N(a) = {c}, as follows: gain(c) =

0—0=0.
@ 3 3
q Q@ 2 2
1 1
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| Sixth Move

move 6: We choose f based on the area constraint and alphabetical
order. We update the gain of the unlocked neighbors of f, N(f) =
{h,c}, as follows: gain(h) =0 —0=0, gain(c) =0 —-1= —1.

3 3
(c) 2 2
s 1 1

r" o _ - '@ 0 0 —(h)
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JSeventh Move

move 7: We move 5. h has no unlocked neighbor.
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J Last Move

move 8: We move c.
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Summary

m Found three best solutions.
= Cutsize reduced from 6 to 3.

= Solutions after move 2 and 4 are better balanced.

cell g(i) > ¢g(i) cutsize

i
0 _ _ _
I e 2 2
2 d 1 3
3 b 0 3
4 g 0 3
5 a -1 2
6 f -l 1
7 h 0 1
8§ ¢ -l 0

6

N B W W W e
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J Probing Further
m FM Algorithm

SENES

[Krishnamurthy, 1984]: developed “look-ahead” gain concept,
where gain 1s now a vector.

[Sanchis, 1989]: perform “flat” multi-way partitioning, where
gain considers all possible destinations

[Cong and Lim, 1998]: showed that recursive is way better than
flat multi-way partitioning, improved flat method

[Dutt and Deng, 1996]: encourages neighboring cell move,
effective 1n avoiding cutting clusters

[Hagen et al, 1997]: showed that LIFO bucket works better than
FIFO

[Hauck and Borriello, 1997]: evaluated all existing FM
extensions and proposed the “best” combination

@
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Spectral Based Partitioning Algorithms

a @ a b c d a b c d
a 0 1 03 a 4 0 0 O

3 3
1 ‘b 1004 b 0500
A_C0003 c 0 0 30
(&)« —(d d 3 4 30 d 0 0 010

D: degree matrix; A: adjacency matrix; D-A: Laplacian matrix

Eigenvectors of D-A form the Laplacian spectrum of G



Some Applications of Laplacian Spectrum

S5 Placement and floorplan
[Hall 1970]
[Otten 1982]
[Frankle-Karp 1986]
[Tsay-Kuh 1986]

S5 Bisection lower bound and computation
[Donath-Hoffman 1973]
[Barnes 1982]
[Boppana 1987]

S5 Ratio-cut lower bound and computation
[Hagen-Kahng 1991]
[Cong-Hagen-Kahng 1992]



Eigenvalues and Eilgenvectors

AX

A X
a ) X X Ta,% t--Ta, X

[aﬂ a,

CHIE VI 3 N\ x, au% ta,x +...ta, X

If AX=AX
then Ais an eigenvalue of A
X Is an eignevector of Aw.r.t. A

(note that Kx is also a eigenvector, for any constant K).



Spectral Partitioning

o Hall’s Results [1970]
— Given an undirected edge weighted graph G
— Important property about the Laplacian Matrix Q of G

— Eigenvector of the 2" smallest eigenvalue of Q gives 1-dimensional
placement of nodes in V

— Sum of the squared length of the edges are minimized
— Under X x¥=1
 Hagen and Kahng’s Results [1992]

— 2nd smallest eigenvalue of Q is a tight lower bound of ratio-cut

— Derive partitioning from 1-dimensional placement for ratio-cut
minimization



J Hagen-Kahng EIG Partitioning

m Perform EIG partitioning and minimize ratio cut cost.

= Cliqgue-based graph model: dotted edge has weight of 0.5, and
solid edge with no label has weight of 0.25.

circuit cligue-based model

@ @
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JAdjacency Matrix

RENES

a b & d e f g h
al O 0 0 05 0O 05 0 0
bl 0 0 0O 025 025 0 025 0.25
cl| O 0 0 0 0.5 0 0 0.5
d| 05 025 0 0 025 1.0 075 0.25
el 0 025 05 025 O 0 058 1.08
f105 0 0 1.0 0 0 0S5 0
g| 0 025 0 075 058 05 0 058
h{ O 025 05 025 108 O 058 0
1| O 0 0 0 0O 10 05 0
71 0 0 0 0O 033 0 083 1.33

@
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J Degree Matrix

h

0

1

EIG Algorithm (3/11)
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Laplacian Matrix
m WeobtainQ=D - A

a b c d e f g h 1 J
a| 1.0 0 0 -0.5 0 -0.5 0 0 0 0
b| O 1.0 0O -025 -025 O -025 -025 O 0
cl| O 0 1.0 0 -0.5 0 0 -0.5 0 0
d|-0.5 -025 0 3.0 -0.25 -1.0 -0.75 -0.25 O 0
el 0 -025 -0.5 -025 299 0 -058 -1.08 0O -0.33
f1-0.5 0 0 -1.0 0 3.0 -0.5 0 -1.0 0
gl 0 -025 0 -075 -0.58 -0.5 399 -0.58 -0.5 -0.83
h| O -025 -05 -025 -1.08 O -0.58 3.99 0 -1.33
1| 0 0 0 0 0 -1.0  -0.5 0 2.0 -0.5
71 O 0 0 0 -033 0 -0.83 -1.33 -0.5 299

@
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J Eigenvalue/vector Computation

The second smallest eigenvalue i1s 0.6281, and its eigenvector is: [-0.6346,
0.1605, 0.5711,-0.1898, 0.2254, -0.2822, 0.0038, 0.1995, -0.1641, 0.1104]" .
We observe the following:

m The squared sum of the values in the vector is 1 as shown by Hall [Hall,
1970].

m These values define a one-dimensional placement of the 10 nodes within
the range of [—1, 1], where the sum of the squared length of all edges
is minimized. Figure 2.21 shows this placement.

m These values define the following ordering among the nodes:

Z ={a.f.d,i,g.75,b,h,e c}

< III'|—L|J|I - —
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J EIG Partitioning

(a) Partitioning ({a},{f.d,i.g,7,b, h,e, c}):
The cut edges are (a, f) and (a, d). Thus, the cutsize is 0.5+0.5 = 1.0.
The ratio cutis 1.0/(1-9) = 0.1111.

(b) Partitioning ({a, f},{d,4,49,7,b, h,e,c}):
The cut edges are (f,2), (f,g), (f,d) and (a,d). Thus, the cutsize is
1.0+ 0.54 1.0+ 0.5 = 3.0. The ratio cutis 3.0/(2 - 8) = 0.1875.

(c) Partitioning ({a, f,d},{7,9,7,b, h,e,c}):
The cut edges are (f,2), (f,q), (d,qg), (d,h), (d,e), and (d,b). Thus,
the cutsize is 1.0 + 0.5 + 0.75 + 3 - 0.25 = 3.0. The ratio cut is
3.0/(3-7)=0.1429.
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J EIG Partitioning (cont)

(d) Partitioning ({a, f,d,i},{g,7,b, h,e,c}):
The cut edges are (¢,7), (¢,9), (f,9), (d,g), (d,h), (d,e), and (d, D).
Thus, the cutsize 1s 0.5 - 3 + 0. 75 + 3. 0.25 = 3.0. The ratio cut is
3.0/(4-6)=0.125.

(e) Partitioning ({a, f,d,i,g9},{j,b,h,e,c}):
The cut edges are (7, 7), (g,7), (g9, h), (g.€), (¢g,b), (d,h), (d,e), and
(d,b). Thus, the cutsize is 0.5+ 0.83 + 0.58 - 2+ 0.25 -4 = 3.49. The
ratio cut is 3.49/(5 - 5) = 0.1396.
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J EIG Partitioning (cont)

(f) Partitioning ({a, f,d,i,¢9,5},{b,h,e,c}):
The cut edges are (7.¢), (j,h), (g,h), (g.€), (g,b), (d, h), (d,e), and
(d,b). Thus, the cutsize is 0.33 4 1. 33+0.58-24+0.25-4 = 3.82. The
ratio cut is 3.82/(6 - 4) = 0.1592,

(g) Partitioning ({a, f,d,7,q9,7,b},{h,e,c}):
The cut edges are (5, ¢e), (7. h), (g, h), (g,€), (d, h), (d,e), (b,h), and
(b, €). Thus, the cutsize is 0.33 4+ 1.33 +0.58 -2+ 0.25-4 = 3.82. The
ratio cut is 3.82/(7 - 3) = 0.1819.
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J EIG Partitioning (cont)

(h) Partitioning ({a, f,d,i,g,75,b,h},{e, c}):
The cut edges are (h.c), (h,e), (j,€), (g,€), (d,e), and (b,e). Thus,
the cutsize 1s 0.5 +1.08 4+ 0.33 + 0.58 + 0.25 4 0.25 = 2.99. The ratio
cutis 2.99/(8-2) = 0.1869.

(i) Partitioning ({a, f,d,7,¢9,j,b,h, e}, {c}):
The cut edges are (h, ¢) and (e, ¢). Thus, the cutsize is 0.5+ 0.5 = 1.0.
The ratio cutis 1.0/(9-1) = 0.1111.
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Summary

m Good solution found:

= {(af,d,g0,i), (j,b,he,c)} is well-balanced and has low RC cost.

Pa Pp cutsize ratio cut

{a} {f.d,i,g,7,b,h,e,c} 1.0 (1-9)=0.1111
{a, f} {d,i,g,7,b,h, e c} 3.0 (2-8)=0.1875
{a, f,d} {2,9,7,b, h,e,c} 3.0 (3-7)=0.1429
{a, f,d, i} {g,7,b, h,e,c} 3.0 (4-6)=0.125
{a, f,d,i,g} {7,b,h,e, c} 3.49 ‘3.49/(5 -5) =0.1396
{a, f,d,i,q,7)} (b, h, e, c) 3.82  3.82/(6-4) = 0.1592
{a, f,d,i, g, b} (hye,c) 3.82  3.82/(7-3) = 0.1819
{a, f,d,i,9,7,b, h} {e,c} 2.99 2.99/(8-2) =0.1869
{a,f,d,i,g,j,b,he} {c} 1.0 1.0/(9-1)=0.1111

@
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J Theorem

RENES

Verity that the second smallest eigenvalue 1s a tight lower bound of the ratio
cut metric.

The cigenvalue 1s A = 0.6281. It is shown in [Hagen and Kahng, 1992]
that ¢ > A\/n, where c is the ratio cut cost, and n is the number of nodes in
the graph. Since n = 10 in our case, we see that A /n = 0.06281 is smaller
than all of the ratio cut values shown in Table 1.6.
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J Probing Further
m EIG Algorithm

SENES

[Chan et al, 1994]: extended EIG to multi-way partitioning, uses
k-smallest eigenvalues/eigenvectors

[Riess et al, 1994]: use GORDIAN-L placement to derive
partitioning solution that minimizes ratio-cut

[Alpert and Yao, 1995]: presented a new vertex ordering scheme
based on eigenvectors

[Alpert and Khang, 1995]: used dynamic programming to split
vertex ordering and obtain multi-way partitioning

[L1 at al, 1996]: studied linear vs quadratic objectives, and
proposed a-order objective F%, (1 <a <2)
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