ECE3040 - Assignment 6

1. The figure shows a MOSFET differential amplifier. It is given that $K=0.001 \mathrm{~A} / \mathrm{V}^{2}$, $V_{T H}=2 \mathrm{~V}, \lambda=0, V^{+}=18 \mathrm{~V}, V^{-}=-18 \mathrm{~V}, I_{Q}=3 \mathrm{~mA}, R_{D}=6.2 \mathrm{k} \Omega$, and $R_{G}=100 \mathrm{k} \Omega$.

(a) Show that $V_{G S}=3.225 \mathrm{~V}$ and $V_{D S}=11.93 \mathrm{~V}$.
(b) For an ac small-signal analysis, show that

$$
v_{o 1}=-v_{o 2}=-7.593\left(v_{i 1}-v_{i 2}\right)
$$

(c) Use the pi or T model of the MOSFETs to investigate whether the body effect cancels out if a resistor R_{S} is placed in series with the source lead of each MOSFET.
2. For the BJT, show that the base-to-collector current gain can be written

$$
\beta=\frac{I_{C}-I_{C B O}}{I_{B}+I_{C B O}}
$$

3. Calculate the values of β and I_{S} for the transistor shown if $V_{C B}=V_{B E}=0.7 \mathrm{~V}, I_{B}=0.2 \mathrm{~mA}$, and $I_{E}=10 \mathrm{~mA} .\left[\beta=49, I_{S}=6.78 \times 10^{-15} \mathrm{~A}\right]$

Figure 1:
4. Calculate the values of β and I_{S} for the transistor shown if $V_{E B}=V_{B C}=0.7 \mathrm{~V}, I_{B}=50 \mu \mathrm{~A}$, and $I_{C}=2.5 \mathrm{~mA}$. $\left[\beta=50, I_{S}=1.73 \times 10^{-15} \mathrm{~A}\right]$

5. Calculate the collector, emitter, and base currents if $V^{+}=3.3 \mathrm{~V}, V_{E E}=-3.3 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$, $R_{E}=47 \mathrm{k} \Omega$, and $\beta=90$. $\left[I_{E}=55.3 \mu \mathrm{~A}, I_{B}=0.608 \mu \mathrm{~A}, I_{C}=54.7 \mu \mathrm{~A}\right]$

6. An npn transistor is operated in the active mode with a base current of $3 \mu \mathrm{~A}$. It is found that $I_{C}=240 \mu \mathrm{~A}$ for $V_{C E}=5 \mathrm{~V}$ and $I_{C}=265 \mu \mathrm{~A}$ for $V_{C E}=10 \mathrm{~V}$. What are the values of β_{0} and V_{A} for this transistor? $\left[\beta_{0}=71.7, V_{A}=43.1 \mathrm{~V}\right]$
7. A BJT has the parameters $\beta_{0}=75, V_{A}=100 \mathrm{~V}$, and $V_{C E}=10 \mathrm{~V}$. Show that $\alpha=0.9880$.
8. The output characteristics of a BJT are shown. (a) What are the values of β and β_{0} at $I_{B}=4 \mu \mathrm{~A}$ and $V_{C E}=10 \mathrm{~V}$? $\left[\beta=90, \beta_{0}=120\right]$ (b) What are the values of β and β_{0} at $I_{B}=8 \mu \mathrm{~A}$ and $V_{C E}=10 \mathrm{~V} ?\left[\beta=95, \beta_{0}=75\right]$

9. Solve for I_{C} and $V_{C B}$ for the values $V^{+}=18 \mathrm{~V}, R_{E}=1 \mathrm{k} \Omega, R_{1}=130 \mathrm{k} \Omega, R_{2}=36 \mathrm{k} \Omega, R_{C}=$ $2.4 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V}$, and $\beta=99$. Is the BJT biased in the active mode? $\left[I_{C}=2.474 \mathrm{~mA}\right.$, $\left.V_{C B}=8.863 \mathrm{~V}\right]$

10. Add a second npn transistor to the circuit of problem 9 as shown with $R_{3}=1 \mathrm{k} \Omega$. Assume the same $V_{B E}$ and β. Solve for $I_{E 2}$. Solve for $V_{C B}$ for both transistors and verify they are in the active mode. $\left[I_{E 2}=11.10 \mathrm{~mA}, V_{C B 2}=6.204 \mathrm{~V}, V_{C B 1}=8.597 \mathrm{~V}\right]$

11. For $R_{1}=10 \mathrm{k} \Omega, R_{2}=47 \mathrm{k} \Omega, R_{C}=1.5 \mathrm{k} \Omega, R_{E}=2 \mathrm{k} \Omega$, and $V^{+}=9 \mathrm{~V}$, solve for I_{C} and $V_{C B}$ for $\beta=99$ and $\beta=\infty$. Verify that the BJT is biased in the active mode. Assume $V_{B E}=0.7 \mathrm{~V}$ for each case. [$\left.I_{C}=1.968 \mathrm{~mA}, V_{C B}=1.212 \mathrm{~V}, I_{C}=2.038 \mathrm{~mA}, V_{C B}=1.016 \mathrm{~V}\right]$

