ECE3040 – Assignment 6

1. The figure shows a MOSFET differential amplifier. It is given that $K = 0.001 \text{ A}/\text{V}^2$, $V_{TH} = 2 \text{ V}, \lambda = 0, V^+ = 18 \text{ V}, V^- = -18 \text{ V}, I_Q = 3 \text{ mA}, R_D = 6.2 \text{ k}\Omega$, and $R_G = 100 \text{ k}\Omega$.

- (a) Show that $V_{GS} = 3.225$ V and $V_{DS} = 11.93$ V.
- (b) For an ac small-signal analysis, show that

$$v_{o1} = -v_{o2} = -7.593 \left(v_{i1} - v_{i2} \right)$$

- (c) Use the pi or T model of the MOSFETs to investigate whether the body effect cancels out if a resistor R_S is placed in series with the source lead of each MOSFET.
- 2. For the BJT, show that the base-to-collector current gain can be written

$$\beta = \frac{I_C - I_{CBO}}{I_B + I_{CBO}}$$

3. Calculate the values of β and I_S for the transistor shown if $V_{CB} = V_{BE} = 0.7 \text{ V}$, $I_B = 0.2 \text{ mA}$, and $I_E = 10 \text{ mA}$. [$\beta = 49$, $I_S = 6.78 \times 10^{-15} \text{ A}$]

Figure 1:

4. Calculate the values of β and I_S for the transistor shown if $V_{EB} = V_{BC} = 0.7 \text{ V}$, $I_B = 50 \,\mu\text{A}$, and $I_C = 2.5 \,\text{mA}$. $[\beta = 50, I_S = 1.73 \times 10^{-15} \,\text{A}]$

5. Calculate the collector, emitter, and base currents if $V^+ = 3.3$ V, $V_{EE} = -3.3$ V, $V_{BE} = 0.7$ V, $R_E = 47$ k Ω , and $\beta = 90$. $[I_E = 55.3 \,\mu\text{A}, I_B = 0.608 \,\mu\text{A}, I_C = 54.7 \,\mu\text{A}]$

- 6. An npn transistor is operated in the active mode with a base current of $3 \,\mu\text{A}$. It is found that $I_C = 240 \,\mu\text{A}$ for $V_{CE} = 5 \,\text{V}$ and $I_C = 265 \,\mu\text{A}$ for $V_{CE} = 10 \,\text{V}$. What are the values of β_0 and V_A for this transistor? [$\beta_0 = 71.7$, $V_A = 43.1 \,\text{V}$]
- 7. A BJT has the parameters $\beta_0 = 75$, $V_A = 100$ V, and $V_{CE} = 10$ V. Show that $\alpha = 0.9880$.
- 8. The output characteristics of a BJT are shown. (a) What are the values of β and β_0 at $I_B = 4 \,\mu\text{A}$ and $V_{CE} = 10 \,\text{V}$? [$\beta = 90, \,\beta_0 = 120$] (b) What are the values of β and β_0 at $I_B = 8 \,\mu\text{A}$ and $V_{CE} = 10 \,\text{V}$? [$\beta = 95, \,\beta_0 = 75$]

9. Solve for I_C and V_{CB} for the values $V^+ = 18 \text{ V}$, $R_E = 1 \text{ k}\Omega$, $R_1 = 130 \text{ k}\Omega$, $R_2 = 36 \text{ k}\Omega$, $R_C = 2.4 \text{ k}\Omega$, $V_{BE} = 0.7 \text{ V}$, and $\beta = 99$. Is the BJT biased in the active mode? $[I_C = 2.474 \text{ mA}, V_{CB} = 8.863 \text{ V}]$

10. Add a second npn transistor to the circuit of problem 9 as shown with $R_3 = 1 \,\mathrm{k}\Omega$. Assume the same V_{BE} and β . Solve for I_{E2} . Solve for V_{CB} for both transistors and verify they are in the active mode. $[I_{E2} = 11.10 \,\mathrm{mA}, V_{CB2} = 6.204 \,\mathrm{V}, V_{CB1} = 8.597 \,\mathrm{V}]$

11. For $R_1 = 10 \,\mathrm{k\Omega}$, $R_2 = 47 \,\mathrm{k\Omega}$, $R_C = 1.5 \,\mathrm{k\Omega}$, $R_E = 2 \,\mathrm{k\Omega}$, and $V^+ = 9 \,\mathrm{V}$, solve for I_C and V_{CB} for $\beta = 99$ and $\beta = \infty$. Verify that the BJT is biased in the active mode. Assume $V_{BE} = 0.7 \,\mathrm{V}$ for each case. $[I_C = 1.968 \,\mathrm{mA}, V_{CB} = 1.212 \,\mathrm{V}, I_C = 2.038 \,\mathrm{mA}, V_{CB} = 1.016 \,\mathrm{V}]$

