ECE3040 - Assignment 7

1. This problem illustrates several different methods for solving the single-stage amplifier circuits. Some are more difficult than others, but all give the same numerical answers when numbers are used.

(C)

(b)

(c)
(a) Figure (a) shows a common-emitter amplifier.
2. If $R_{t e}=0$, use the pi model with $i_{c}^{\prime}=g_{m} v_{b e}$, voltage division, and Ohm's Law to show that

$$
v_{o}=g_{m} \times \frac{v_{t b} r_{\pi}}{R_{t b}+r_{\pi}} \times\left[-\left(r_{0} \| R_{t c}\right)\right]
$$

Show that $r_{i n}=R_{t b}+r_{\pi}$ and $r_{\text {out }}=r_{0} \| R_{t c}$.
2. If $R_{t e}=0$, use the pi model with $i_{c}^{\prime}=\beta i_{b}$ and Ohm's Law to show that

$$
v_{o}=\beta \times \frac{v_{t b}}{R_{t b}+r_{\pi}} \times\left[-\left(r_{0} \| R_{t c}\right)\right]
$$

3. Show that the two above answers are equivalent. To show this, you must use $\beta=$ $g_{m} r_{\pi}$.
4. If $R_{t e}=0$, use the simplified T model with $i_{c}^{\prime}=\alpha i_{e}^{\prime}$ and Ohm's Law to show that

$$
v_{o}=\alpha \times \frac{v_{t b}}{r_{e}^{\prime}} \times\left[-\left(r_{0} \| R_{t c}\right)\right] \quad r_{e}^{\prime}=\frac{R_{t b}}{1+\beta}+r_{e}
$$

5. If $R_{t e} \neq 0$ and $r_{0}=\infty$, use the simplified T model to show that v_{o} is given by

$$
v_{o}=-v_{t b} \frac{\alpha R_{t c}}{r_{e}^{\prime}+R_{t e}} \quad r_{e}^{\prime}=\frac{R_{t b}}{1+\beta}+r_{e}
$$

(b) Figure (b) shows a common-collector amplifier.

1. Use superposition, voltage division, and Ohm's Law with the pi model to show that

$$
\begin{aligned}
v_{b e} & =v_{t b} \frac{r_{\pi}}{R_{t b}+r_{\pi}}-v_{o} \frac{r_{\pi}}{R_{t b}+r_{\pi}} \\
v_{o} & =v_{t b} \frac{r_{0} \| R_{t e}}{R_{t b}+r_{\pi}+r_{0} \| R_{t e}}+i_{c}^{\prime}\left[r_{0}\left\|R_{t e}\right\|\left(r_{\pi}+R_{t b}\right)\right]
\end{aligned}
$$

Use the equation $i_{c}^{\prime}=g_{m} v_{b e}$ and the above two equations to show that

$$
v_{o}=v_{t b} \frac{\frac{r_{0} \| R_{t e}}{R_{t b}+r_{\pi}+r_{0} \| R_{t e}}+g_{m} \frac{r_{\pi}}{R_{t b}+r_{\pi}}\left[r_{0}\left\|R_{t e}\right\|\left(r_{\pi}+R_{t b}\right)\right]}{1+g_{m} \frac{r_{\pi}}{R_{t b}+r_{\pi}}\left[r_{0}\left\|R_{t e}\right\|\left(r_{\pi}+R_{t b}\right)\right]}
$$

Show that $r_{i n}=R_{t b}+r_{i b}$, where $r_{i b}=r_{\pi}+(1+\beta)\left(r_{0} \| R_{t e}\right)$.
2. Use voltage division with the simplified T model to show that

$$
v_{o}=v_{t b} \frac{r_{0} \| R_{t e}}{r_{e}^{\prime}+r_{0} \| R_{t e}} \quad r_{e}^{\prime}=\frac{R_{t b}}{1+\beta}+r_{e}
$$

Which is the simpler solution, this one or the one above? Show that $r_{o u t}=r_{e}^{\prime}\left\|r_{0}\right\| R_{t e}$.
3. Can you show that the above two answers for v_{o} are the same? You must use $\beta=g_{m} r_{\pi}$ and $r_{e}=r_{\pi} /(1+\beta)$ to do this.
(c) Figure (c) shows a common-base amplifier.

1. For $R_{t b}=0$ and $r_{0}=\infty$, use the pi model with $i_{c}^{\prime}=g_{m} v_{b e}$, superposition, voltage division, and Ohm's Law to show that

$$
v_{b e}=-v_{t e} \frac{r_{\pi}}{R_{t e}+r_{\pi}}-i_{c}^{\prime}\left(R_{t e} \| r_{\pi}\right)=-v_{t e} \frac{r_{\pi}}{R_{t e}+r_{\pi}}-g_{m} v_{b e}\left(R_{t e} \| r_{\pi}\right)
$$

Solve this equation to obtain

$$
v_{b e}=-v_{t e} \frac{\frac{r_{\pi}}{R_{t e}+r_{\pi}}}{1+g_{m}\left(R_{t e} \| r_{\pi}\right)}
$$

Show that v_{o} is given by

$$
v_{o}=+v_{t e} \frac{\frac{g_{m} r_{\pi}}{R_{t e}+r_{\pi}} R_{t c}}{1+g_{m}\left(R_{t e} \| r_{\pi}\right)}
$$

2. For $R_{t b}=0$ and $r_{0}=\infty$, use the T model and Ohm's Law to show that

$$
i_{e}^{\prime}=\frac{-v_{t e}}{R_{t e}+r_{e}}
$$

Show that v_{o} is given by

$$
v_{o}=+v_{t e} \frac{\alpha R_{t c}}{R_{t e}+r_{e}}
$$

Show that $r_{i n}=R_{t e}+r_{e}$ and $r_{o u t}=R_{C}$.
3. Show that the two above answers for v_{o} are equivalent. To do this, you must use $\beta=g_{m} r_{\pi}$ and $\alpha=\beta /(1+\beta)$
4. For $R_{t b} \neq 0$ and $r_{0}=\infty$, use the simplified T model to show that

$$
i_{e}^{\prime}=-\frac{v_{t e}}{R_{t e}+r_{e}^{\prime}} \quad r_{e}^{\prime}=\frac{R_{t b}}{1+\beta}+r_{e}
$$

Show that v_{o} is given by

$$
v_{o}=+v_{t e} \frac{\alpha R_{t c}}{R_{t e}+r_{e}^{\prime}}
$$

For $R_{t b}=0$, show that this reduces to the answer obtained with the T model. Show that $r_{i n}=R_{t e}+r_{e}^{\prime}$.
2. The figure shows a CE amplifier. For the dc analysis, all capacitors are open circuits. For the ac signal analysis, C_{1}, C_{2}, and C_{3} are to be considered to be short circuits. C_{L} represents the load capacitance which is usually negligible in the frequency band of interest. It is to be considered to be an open circuit for the ac signal analysis. It is given that $R_{1}=430 \mathrm{k} \Omega$, $R_{2}=30 \mathrm{k} \Omega, R_{3}=0, R_{C}=12 \mathrm{k} \Omega, R_{E}=1 \mathrm{k} \Omega, R_{s}=1.2 \mathrm{k} \Omega, R_{L}=20 \mathrm{k} \Omega, \beta=99, r_{0}=50 \mathrm{k} \Omega$ $V_{B E}=0.65 \mathrm{~V}, V_{T}=25 \mathrm{mV}, V^{+}=24 \mathrm{~V}$, and $V^{-}=-24 \mathrm{~V}$.

(a) Show that $V_{B B}=-20.87 \mathrm{~V}, R_{B B}=28.04 \mathrm{k} \Omega, I_{E}=1.937 \mathrm{~mA}, V_{C}=0.986 \mathrm{~V}, V_{B}=$ -21.41 V , and $V_{C B}=22.4 \mathrm{~V}$.
(b) Show that $v_{t b}=0.959 v_{s}, R_{t b}=1.151 \mathrm{k} \Omega, R_{t e}=0$, and $R_{t c}=7.5 \mathrm{k} \Omega$.
(c) Use all four expressions from problem 1a to show that $v_{o}=-253.6 v_{s}$.
(d) If $R_{s}=0$, show that $v_{o}=-500.3 v_{s}$. What is the main reason the gain changes so much for this case?
(e) Show that $r_{\text {in }}=1.069 \mathrm{k} \Omega$ and $r_{\text {out }}=9.677 \mathrm{k} \Omega$.
3. The figure shows a CC amplifier. For the dc analysis, all capacitors are open circuits. For the ac signal analysis, C_{1} and C_{2} are to be considered to be short circuits. It is given that $R_{1}=183.5 \mathrm{k} \Omega, R_{2}=593 \mathrm{k} \Omega, R_{E}=5.8 \mathrm{k} \Omega, R_{s}=1.2 \mathrm{k} \Omega, R_{L}=20 \mathrm{k} \Omega, \beta=99, r_{0}=50 \mathrm{k} \Omega$ $V_{B E}=0.65 \mathrm{~V}, V_{T}=25 \mathrm{mV}, V^{+}=24 \mathrm{~V}$, and $V^{-}=-24 \mathrm{~V}$.

(a) Show that $V_{B B}=12.66 \mathrm{~V}, R_{B B}=140.1 \mathrm{k} \Omega, I_{E}=5 \mathrm{~mA}, V_{C}=24 \mathrm{~V}, V_{B}=5.65 \mathrm{~V}$, and $V_{C B}=18.35 \mathrm{~V}$.
(b) Show that $v_{t b}=0.992 v_{s}, R_{t b}=1.19 \mathrm{k} \Omega$ and $R_{t e}=4.496 \mathrm{k} \Omega$.
(c) Use all three expressions from problem 1 b to show that $v_{o}=0.988 v_{s}$.
(d) If $R_{s}=0$, show that $v_{o}=0.996 v_{s}$.
(e) Show that $r_{\text {in }}=106.9 \mathrm{k} \Omega$ and $r_{\text {out }}=16.83 \Omega$.
4. The figure shows a CE amplifier. For the dc analysis, all capacitors are open circuits. For the ac signal analysis, C_{1}, C_{2}, and C_{3} are to be considered to be short circuits. It is given that $R_{1}=430 \mathrm{k} \Omega, R_{2}=30 \mathrm{k} \Omega, R_{3}=0, R_{C}=12 \mathrm{k} \Omega, R_{E}=1 \mathrm{k} \Omega, R_{s}=50 \Omega, R_{L}=20 \mathrm{k} \Omega, \beta=99$, $r_{0}=\infty, V_{B E}=0.65 \mathrm{~V}, V_{T}=25 \mathrm{mV}, V^{+}=24 \mathrm{~V}$, and $V^{-}=-24 \mathrm{~V}$.

(a) Show that $V_{B B}=-20.87 \mathrm{~V}, R_{B B}=28.04 \mathrm{k} \Omega, I_{E}=1.937 \mathrm{~mA}, V_{C}=0.986 \mathrm{~V}, V_{B}=$ -21.41 V , and $V_{C B}=22.4 \mathrm{~V}$.
(b) Show that $v_{t e}=0.952 v_{s}, R_{t e}=47.62 \Omega, R_{t b}=0$, and $R_{t c}=7.5 \mathrm{k} \Omega$.
(c) Use all three expressions from problem 1 c to show that $v_{o}=116.8 v_{s}$.
(d) If $R_{s}=0$, show that $v_{o}=-575.3 v_{s}$. What is the main reason the gain changes so much for this case?
(e) Show that $r_{\text {in }}=12.74 \Omega$ and $r_{\text {out }}=12 \mathrm{k} \Omega$.

