May 26, 2004

Professor Leach
Name
Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad

1. It is given that $V_{1}=30 \mathrm{~V}, R_{1}=1.5 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$, and $R_{3}=1 \mathrm{k} \Omega$. (An alternate version of the problem had $V_{1}=15 \mathrm{~V}, R_{1}=3 \mathrm{k} \Omega, R_{2}=1.5 \mathrm{k} \Omega$, and $R_{3}=1 \mathrm{k} \Omega$.
(a) Solve for the Thévenin voltage V_{S} and Thévenin resistance R_{S} seen by the diode.

$$
V_{S}=V_{1} \frac{R_{1}}{R_{1}+R_{2}}=10 \mathrm{~V} \quad R_{S}=R_{1} \| R_{2}+R_{3}=2 \mathrm{k} \Omega
$$

(b) Draw the load line for the diode on the characteristics given and estimate the diode voltage and current at the Q point.

2. (a) A diode is biased at a constant current. If the temperature changes in constant increments ΔT, describe the mathematical variation of the diode voltage. Answer: It changes by an additive amount, i.e. you add or subtract something each time the temperature increases by ΔT.
(b) If the temperature of a diode changes in constant increments ΔT, describe the mathematical variation of the saturation current of the diode. Answer: It changes by a multiplicitave factor, i.e. you multiply by something each time the temperature increases by ΔT.
(c) Represent the total voltage across a diode by $v_{D}=V_{D}+v_{d}$ and the total current through the diode by $i_{D}=I_{D}+i_{d}$, where V_{D} and I_{D} are the Q-point values and v_{d} and i_{d} are small-signal changes about the Q point. In deriving the small-signal model of the diode, what is the basic mathematical step that is used to relate i_{d} to v_{d} ? Answer: You solve for the slope or derivative of the i_{D} versus v_{D} curve at the Q point and set this equal to the ratio i_{d} / v_{d}. Although not part of the answer, this slope is the reciprical of the small-signal resistance r_{d}.

