ECE 3040 Microelectronic Circuits Quiz 2

May 26, 2004

 Professor Leach
 Name______

 Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. Honor Code

 Statement: I have neither given nor received help on this quiz. Initials ______

- 1. It is given that $V_1 = 30$ V, $R_1 = 1.5$ k Ω , $R_2 = 3$ k Ω , and $R_3 = 1$ k Ω . (An alternate version of the problem had $V_1 = 15$ V, $R_1 = 3$ k Ω , $R_2 = 1.5$ k Ω , and $R_3 = 1$ k Ω .
 - (a) Solve for the Thévenin voltage V_S and Thévenin resistance R_S seen by the diode.

$$V_S = V_1 \frac{R_1}{R_1 + R_2} = 10 \text{ V}$$
 $R_S = R_1 ||R_2 + R_3 = 2 \text{ k}\Omega$

(b) Draw the load line for the diode on the characteristics given and estimate the diode voltage and current at the Q point.

2. (a) A diode is biased at a constant current. If the temperature changes in constant increments ΔT , describe the mathematical variation of the diode voltage. Answer: It changes by an additive amount, i.e. you add or subtract something each time the temperature increases by ΔT .

(b) If the temperature of a diode changes in constant increments ΔT , describe the mathematical variation of the saturation current of the diode. Answer: It changes by a multiplicitave factor, i.e. you multiply by something each time the temperature increases by ΔT .

(c) Represent the total voltage across a diode by $v_D = V_D + v_d$ and the total current through the diode by $i_D = I_D + i_d$, where V_D and I_D are the Q-point values and v_d and i_d are small-signal changes about the Q point. In deriving the small-signal model of the diode, what is the basic mathematical step that is used to relate i_d to v_d ? Answer: You solve for the slope or derivative of the i_D versus v_D curve at the Q point and set this equal to the ratio i_d/v_d . Although not part of the answer, this slope is the reciprical of the small-signal resistance r_d .