ECE 3040 Microelectronic Circuits Quiz 5

June 16, 2004

Professor Leach Name______ Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of 2 problems. Honor Code Statement: I have neither given nor received help on this quiz. Initials ______

- 1. The MOSFET has the parameters K = 0.0005 A/V and $V_{TH} = 1.75 \text{ V}$. It is given that $V^+ = +18 \text{ V}$, $V^- = -18 \text{ V}$, $R_1 = 3 \text{ M}\Omega$, $R_S = 2 \text{ k}\Omega$, and $i_D = K (v_{GS} V_{TH})^2$.
 - (a) Solve for R_2 such that $I_D = 1.5 \text{ mA}$.
 - (b) What is the maximum value that R_D can have for the MOSFET to remain in the saturation state?

Answers:

$$V_{GS} = \sqrt{\frac{I_D}{K}} + V_{TH} = 3.482 \,\mathrm{V} \qquad V_G = V_{GS} + I_D R_S + V^- = -11.518 \,\mathrm{V}$$
$$I_{R_2} = I_{R_1} = \frac{V^+ - V_G}{R_1} = 9.839 \,\mu\mathrm{A} \qquad R_2 = \frac{V_G - V^-}{I_{R_2}} = 658.8 \,\mathrm{k\Omega}$$

$$V_{DS} = (V^+ - I_D R_D) - (V^- + I_D R_S) = 33 - I_D R_D \ge V_{GS} - V_{TH} = \sqrt{\frac{I_D}{K}} = 1.732 \,\mathrm{V}$$

$$\Rightarrow R_D \le \frac{33 - 1.732}{I_D} = 20.85 \,\mathrm{k}\Omega$$

2. The MOSFET drain current is given by the equation $i_D = K_0 (1 + \lambda v_{DS}) (v_{GS} - V_{TH})^2$. Describe how this equation is used to solve for the parameters g_m and r_0 in the hybrid-pi model. Assume the Q-point values I_D , V_{GS} , and V_{DS} . You should use graphs and equations, as appropriate, in your description. Label on the graphs how the parameters are defined.

Answers: g_m is the slope of the i_D versus v_{GS} curve at the Q point with v_{DS} held constant. r_0 is the reciprocal of the slope of the i_D versus v_{DS} curve at the Q point with v_{GS} held constant.