ECE 3040 Microelectronic Circuits Quiz 5

June 16, 2004

Professor Leach
Name
Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of 2 problems. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad

1. The MOSFET has the parameters $K=0.0005 \mathrm{~A} / \mathrm{V}$ and $V_{T H}=1.75 \mathrm{~V}$. It is given that $V^{+}=+18 \mathrm{~V}$, $V^{-}=-18 \mathrm{~V}, R_{1}=3 \mathrm{M} \Omega, R_{S}=2 \mathrm{k} \Omega$, and $i_{D}=K\left(v_{G S}-V_{T H}\right)^{2}$.
(a) Solve for R_{2} such that $I_{D}=1.5 \mathrm{~mA}$.
(b) What is the maximum value that R_{D} can have for the MOSFET to remain in the saturation state?

Answers:

$$
\begin{gathered}
V_{G S}=\sqrt{\frac{I_{D}}{K}}+V_{T H}=3.482 \mathrm{~V} \quad V_{G}=V_{G S}+I_{D} R_{S}+V^{-}=-11.518 \mathrm{~V} \\
I_{R_{2}}=I_{R_{1}}=\frac{V^{+}-V_{G}}{R_{1}}=9.839 \mu \mathrm{~A} \quad R_{2}=\frac{V_{G}-V^{-}}{I_{R_{2}}}=658.8 \mathrm{k} \Omega \\
V_{D S}= \\
\left(V^{+}-I_{D} R_{D}\right)-\left(V^{-}+I_{D} R_{S}\right)=33-I_{D} R_{D} \geq V_{G S}-V_{T H}=\sqrt{\frac{I_{D}}{K}}=1.732 \mathrm{~V} \\
\Rightarrow \quad R_{D} \leq \frac{33-1.732}{I_{D}}=20.85 \mathrm{k} \Omega
\end{gathered}
$$

2. The MOSFET drain current is given by the equation $i_{D}=K_{0}\left(1+\lambda v_{D S}\right)\left(v_{G S}-V_{T H}\right)^{2}$. Describe how this equation is used to solve for the parameters g_{m} and r_{0} in the hybrid-pi model. Assume the Q-point values $I_{D}, V_{G S}$, and $V_{D S}$. You should use graphs and equations, as appropriate, in your description. Label on the graphs how the parameters are defined.
Answers: g_{m} is the slope of the i_{D} versus $v_{G S}$ curve at the Q point with $v_{D S}$ held constant. r_{0} is the reciprocal of the slope of the i_{D} versus $v_{D S}$ curve at the Q point with $v_{G S}$ held constant.
