
ECE 3040 Microelectronic Circuits Quiz 7

June 30, 2004

Professor Leach Name______ Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of 2 problems. Honor Code Statement: I have neither given nor received help on this quiz. Initials ______

- 1. The BJT has the parameters $\beta = 199$ and $V_{BE} = 0.65$ V. It is given that $V^+ = +15$ V, $V^- = -15$ V, $R_1 = 300$ k Ω , and $R_2 = 33$ k Ω .
 - (a) Solve for R_E such that $I_C = 2 \text{ mA}$.
 - (b) What is the maximum value that R_C can have for the BJT to remain in the active mode?

Answers:

$$V_{BB} = \frac{V^{+}R_{2} + V^{-}R_{1}}{R_{1} + R_{2}} = -12.027 \, V \qquad R_{BB} = R_{1} \| R_{2} = 29.73 \, \mathrm{k\Omega}$$

$$V_{BB} - V^{-} = \frac{I_{C}}{\beta} R_{BB} + V_{BE} + \frac{I_{C}}{\alpha} R_{E} \Longrightarrow R_{E} = \alpha \left(\frac{V_{BB} - V^{-} - V_{BE}}{I_{C}} - \frac{R_{BB}}{\beta} \right) = 1007 \, \Omega$$

$$V_{CB} = \left(V^{+} - I_{C}R_{C} \right) - \left(V_{BE} + \frac{I_{C}}{\alpha} R_{E} + V^{-} \right) > 0$$

$$\implies R_{C} = \frac{1}{I_{C}} \left[V^{+} - \left(V_{BE} + \frac{I_{C}}{\alpha} R_{E} + V^{-} \right) \right] < 13.66 \, \mathrm{k\Omega}$$

2. The BJT active mode currents are given by the equations $i_C = I_{S0} (1 + v_{CE}/V_A) \exp(v_{BE}/V_T)$, $i_B = i_C/\beta$, and $\beta = \beta_0 (1 + v_{CE}/V_A)$. Describe how these equations are used to plot the transfer, output, and input characteristic curves. Show how the parameters g_m , r_0 , and r_{π} in the hybrid-pi model are defined on the curves. Assume the Q-point values I_C , V_{CE} , and V_{BE} . **Answers:** The plots of the characteristic curves are covered in the class notes. At the Q point, g_m is the slope of the transfer characteristic curve, r_0 is the reciprocal of the slope of the output characteristic curve, and r_{π} is the reciprocal of the slope of the input characteristic curve.