ECE 3040 Microelectronic Circuits Quiz 8

July 7, 2004
Professor Leach
Name
Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of one problem. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad

1. The figure shows the ac signal circuit of a common-emitter amplifier. It is given that $I_{E}=2 \mathrm{~mA}$, $\beta=99, r_{0}=\infty$, and $V_{T}=0.025 \mathrm{~V}, g_{m}=I_{C} / V_{T}, r_{\pi}=V_{T} / I_{B}, r_{e}=V_{T} / I_{E}$, and $r_{e}^{\prime}=R_{t b} /(1+\beta)+r_{e}$.
(a) Let $R_{t e}=0$ and $R_{t b}=3.3 \mathrm{k} \Omega$. Replace the transistor with the π model and use $i_{c}^{\prime}=g_{m} v_{b e}$. Write the appropriate equations and solve for the value of $R_{t c}$ such that $v_{o} / v_{t b}=-200$.
(b) Let $R_{t e}=0$ and $R_{t c}=3.3 \mathrm{k} \Omega$. Replace the transistor with the T model and use $i_{c}^{\prime}=a \iota_{e}^{\prime}$. Write the appropriate equations and solve for the value of $R_{t b}$ such that $v_{o} / v_{t b}=-50$.
(c) Let $R_{t b}=1 \mathrm{k} \Omega, R_{t e}=50 \Omega$, and $R_{t c}=10 \mathrm{k} \Omega$. Use the simplified T model to solve for $v_{o} / v_{t b}$.

Solutions: (see the class notes for the small-signal circuits) $g_{m}=I_{C} / V_{T}=\alpha I_{E} / V_{T}=0.079 \mathrm{~S}, r_{\pi}=$ $V_{T} / I_{B}=(1+\beta) V_{T} / I_{E}=1.25 \mathrm{k} \Omega, \alpha=\beta /(1+\beta)=0.99, r_{e}=V_{T} / I_{E}=12.5 \Omega, r_{e}^{\prime}=R_{t b} /(1+\beta)+$ $r_{e}=22.5 \Omega$
(a)

$$
\begin{aligned}
v_{o} & =\quad-i_{c}^{\prime} R_{t c}=-\left[g_{m}\left(v_{b e}\right)\right] R_{t c}=-\left[g_{m}\left(v_{t b} \frac{r_{\pi}}{R_{t b}+r_{\pi}}\right)\right] R_{t c} \\
& \Longrightarrow R_{t c}=\frac{R_{t b}+r_{\pi}}{g_{m} r_{\pi}}\left(-\frac{v_{o}}{v_{t b}}\right)=\frac{3300+1250}{0.079 * 1250}(200)=9.192 \mathrm{k} \Omega
\end{aligned}
$$

(b)

$$
\begin{aligned}
v_{o} & =-i_{c}^{\prime} R_{t c}=-\left[\alpha\left(i_{e}^{\prime}\right)\right] R_{t c} \quad v_{t b}=i_{b} R_{t b}+i_{e}^{\prime} r_{e}=\frac{i_{e}^{\prime}}{1+\beta} R_{t b}+i_{e}^{\prime} r_{e}=i_{e}^{\prime}\left(\frac{R_{t b}}{1+\beta}+r_{e}\right) \\
& \Longrightarrow i_{e}^{\prime}=\frac{v_{t b}}{\frac{R_{t b}}{1+\beta}+r_{e}} \Longrightarrow v_{o}=-\left[\alpha\left(\frac{v_{t b}}{\frac{R_{t b}}{1+\beta}+r_{e}}\right)\right] R_{t c} \\
& \Longrightarrow R_{t b}=(1+\beta)\left[\alpha R_{t c}\left(\frac{v_{o}}{v_{t b}}\right)^{-1}-r_{e}\right]=(1+99)\left[0.99 \times 3300\left(\frac{1}{50}\right)^{-1}-12.5\right]=5.284 \mathrm{k} \Omega
\end{aligned}
$$

(c)

$$
\begin{aligned}
& v_{o}=-i_{c}^{\prime} R_{t c}=-\left[\alpha\left(i_{e}^{\prime}\right)\right] R_{t c} \\
&=-\left[\alpha\left(\frac{v_{t b}}{\frac{R_{t b}}{1+\beta}+R_{t e}+r_{e}}\right)\right] R_{t c} \\
& \Longrightarrow \frac{v_{o}}{v_{t b}}-\frac{\alpha R_{t c}}{\frac{R_{t b}}{1+\beta}+R_{t e}+r_{e}}=-\frac{0.99 \times 10000}{\frac{1000}{1+99}+50+12.5}=-136.5
\end{aligned}
$$

