ECE 3040 Microelectronic Circuits Quiz 8

July 7, 2004

Professor Leach

Name_

Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of one problem. **Honor Code Statement:** *I have neither given nor received help on this quiz.* Initials ______

1. The figure shows the ac signal circuit of a common-emitter amplifier. It is given that $I_E = 2 \text{ mA}$, $\beta = 99, r_0 = \infty$, and $V_T = 0.025 \text{ V}, g_m = I_C/V_T, r_\pi = V_T/I_B, r_e = V_T/I_E$, and $r'_e = R_{tb}/(1+\beta) + r_e$. (a) Let $R_{te} = 0$ and $R_{tb} = 3.3 \text{ k}\Omega$. Replace the transistor with the π model and use $i'_c = g_m v_{be}$. Write the appropriate equations and solve for the value of R_{tc} such that $v_o/v_{tb} = -200$.

(b) Let $R_{te} = 0$ and $R_{tc} = 3.3 \text{ k}\Omega$. Replace the transistor with the T model and use $i'_c = a\iota'_e$. Write the appropriate equations and solve for the value of R_{tb} such that $v_o/v_{tb} = -50$.

(c) Let $R_{tb} = 1 \,\mathrm{k}\Omega$, $R_{te} = 50 \,\Omega$, and $R_{tc} = 10 \,\mathrm{k}\Omega$. Use the simplified T model to solve for v_o/v_{tb} .

Solutions: (see the class notes for the small-signal circuits) $g_m = I_C/V_T = \alpha I_E/V_T = 0.079$ S, $r_{\pi} = V_T/I_B = (1 + \beta) V_T/I_E = 1.25 \text{ k}\Omega$, $\alpha = \beta/(1 + \beta) = 0.99$, $r_e = V_T/I_E = 12.5 \Omega$, $r'_e = R_{tb}/(1 + \beta) + r_e = 22.5 \Omega$

$$v_o = -i'_c R_{tc} = -\left[g_m\left(v_{be}\right)\right] R_{tc} = -\left[g_m\left(v_{tb}\frac{r_{\pi}}{R_{tb} + r_{\pi}}\right)\right] R_{tc}$$

$$\implies R_{tc} = \frac{R_{tb} + r_{\pi}}{g_m r_{\pi}} \left(-\frac{v_o}{v_{tb}}\right) = \frac{3300 + 1250}{0.079 * 1250} (200) = 9.192 \,\mathrm{k\Omega}$$

(b)

$$v_{o} = -i'_{c}R_{tc} = -\left[\alpha\left(i'_{e}\right)\right]R_{tc} \qquad v_{tb} = i_{b}R_{tb} + i'_{e}r_{e} = \frac{i'_{e}}{1+\beta}R_{tb} + i'_{e}r_{e} = i'_{e}\left(\frac{R_{tb}}{1+\beta} + r_{e}\right)$$

$$\implies i'_{e} = \frac{v_{tb}}{\frac{R_{tb}}{1+\beta} + r_{e}} \Longrightarrow v_{o} = -\left[\alpha\left(\frac{v_{tb}}{\frac{R_{tb}}{1+\beta} + r_{e}}\right)\right]R_{tc}$$

$$\implies R_{tb} = (1+\beta)\left[\alpha R_{tc}\left(\frac{v_{o}}{v_{tb}}\right)^{-1} - r_{e}\right] = (1+99)\left[0.99 \times 3300\left(\frac{1}{50}\right)^{-1} - 12.5\right] = 5.284 \,\mathrm{k\Omega}$$

(c)

$$v_{o} = -i'_{c}R_{tc} = -\left[\alpha\left(i'_{e}\right)\right]R_{tc} = -\left[\alpha\left(\frac{v_{tb}}{\frac{R_{tb}}{1+\beta} + R_{te} + r_{e}}\right)\right]R_{tc}$$
$$\implies \frac{v_{o}}{v_{tb}} - \frac{\alpha R_{tc}}{\frac{R_{tb}}{1+\beta} + R_{te} + r_{e}} = -\frac{0.99 \times 10000}{\frac{1000}{1+99} + 50 + 12.5} = -136.5$$