ECE 3040 Microelectronic Circuits Quiz 10

July 21, 2004

Professor Leach
Name
Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of one problem. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad

1. The potentiometer has a resistance $R_{P}=100 \mathrm{k} \Omega$. The resistance from the potentiometer wiper to ground is labeled $x R_{p}$, where $0 \leq x \leq 1$. The voltage gain is a maximum when $x=1$. It is desired to have $v_{O} / v_{I}=30$ when $x=1$. When $v_{O}=10 \mathrm{~V}$, the current through R_{2} is $1 / 3 \mathrm{~mA}$.

(a) Solve for R_{1} and R_{2}.

$$
\begin{aligned}
1+\frac{R_{2}}{R_{1}} & =30 \Longrightarrow R_{1}+R_{2}=30 R_{1} \\
10 & =\frac{1}{3}\left(R_{1}+R_{2}\right)=\frac{1}{3} \times 30 R_{1} \Longrightarrow R_{1}=1 \mathrm{k} \Omega \\
R_{2} & =30 R_{1}-R_{1}=29 R_{1}=29 \mathrm{k} \Omega
\end{aligned}
$$

(b) Plot the voltage gain v_{O} / v_{I} as a function of x for $0 \leq x \leq 1 . y=30 x$

$$
\frac{v_{O}}{v_{I}}=\frac{x R_{P}}{(1-x) R_{P}+x R_{P}} \times 30=30 x
$$

2. For $v_{I}=8 \mathrm{~V}, R_{1}=1 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega, R_{3}=3 \mathrm{k} \Omega$, and $R_{4}=4 \mathrm{k} \Omega$, solve for i_{1}, v_{A}, v_{B}, and v_{O}.

$$
\begin{array}{rlr}
i_{1} & =\frac{v_{I}}{R_{1}+R_{3}}=2 \mathrm{~mA} & v_{A}=i_{1}\left(R_{1}+R_{2}\right)=6 \mathrm{~V} \\
v_{B} & =v_{A}-v_{I}=-2 \mathrm{~V} & v_{O}=i_{1}\left(R_{2}+R_{4}\right)=12 \mathrm{~V}
\end{array}
$$

