ECE 3040 Quiz 6 - June 29, 2005

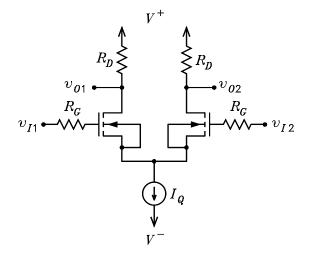
Professor Leach Name______ Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of 1 problem. Honor Code Statement: I have neither given nor received help on this quiz. Initials

The figure shows a MOSFET differential amplifier. It is given that i_D = K (v_{GS} - v_{TH})², g_m = 2√KI_D, g_{mb} = χg_m, r_s = 1/g_m, r_{sb} = 1/g_{mb}, r₀ = (λ⁻¹ + V_{DS})/I_D, V⁺ = 24 V, V⁻ = -24 V, I_Q = 4 mA, R_D = 10 kΩ, and R_G = 50 kΩ. At the bias or Q point, it is known for each MOSFET that K = 5 × 10⁻⁴ A/V², V_{TH} = 1.5 V, λ = 0, and χ = 0.4.
 (a) With v_{I1} = v_{I2} = 0, solve for V_{GS} and V_{DS}. Verify that each MOSFET is in the saturation state at the Q point.

$$V_{GS} = \sqrt{\frac{I_D}{K}} + V_{TH} = 2.914 \text{ V}$$
$$V_{DS} = \left(V^+ - \frac{I_Q}{2}R_D\right) - V_S = \left(V^+ - \frac{I_Q}{2}R_D\right) + V_{GS} = 6.914 \text{ V}$$
$$V_{GS} - V_{TH} = 1.414 \text{ V} < V_{DS} \Longrightarrow \text{Saturation mode}$$

(b) For $v_{I2} = V_{I2} + v_{i2} = 0$, use either the π or the T model to solve for the ac small-signal voltages v_{o1} and v_{o2} as functions of v_{o1} .

$$i_{d1} = i_{s1} = \frac{g_m}{2} v_{i1} = \frac{v_{i1}}{2r_s}$$


$$i_{d2} = -i_{d1} = i_{s2} = -i_{s1}$$

$$r_s = \frac{1}{g_m} = \frac{1}{2\sqrt{KI_D}} = 707.1$$

$$v_{o1} = -v_{o2} = \frac{v_{i1}}{2r_e} R_D = -7.071 v_{i1}$$

(c) If $v_{I1} = V_{I1} + v_{i1} = 0$, using the preceding answer and the concept of symmetry, write by inspection the solutions for v_{o1} and v_{o2} as functions of v_{i2} .

$$v_{o2} = -v_{o1} = \frac{v_{i2}}{2r_e}R_D = -7.071v_{i2}$$

