Professor Leach
Printed Name
Instructions. Place a box around your answers. Express numerical answers as a decimal number. Place a box around all numerical answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
The figure shows a BJT bias circuit. It is given that $V^{+}=18 \mathrm{~V}, R_{E}=7.5 \mathrm{k} \Omega, R_{1}=110 \mathrm{k} \Omega$, $R_{2}=36 \mathrm{k} \Omega, R_{C}=2.4 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V}$, and $\beta=94$.
(a) Solve for V^{-}for $I_{E}=2 \mathrm{~mA}$.
(b) Verify that the BJT is biased in the active mode.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{p}}:=18 \quad \mathrm{R}_{\mathrm{E}}:=7500 \quad \mathrm{R}_{1}:=110000 \quad \mathrm{R}_{2}:=36000 \quad \mathrm{R}_{\mathrm{C}}:=2400 \quad \mathrm{~V}_{\mathrm{BE}}:=0.7 \quad \beta:=94 \\
& \alpha:=\frac{\beta}{1+\beta} \quad \mathrm{V}_{\mathrm{m}}:=-12 \\
& \mathrm{~V}_{\mathrm{BB}}:=\mathrm{V}_{\mathrm{p}} \cdot \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{~V}_{\mathrm{BB}}=4.438 \quad \mathrm{R}_{\mathrm{BB}}:=\mathrm{R}_{\mathrm{p}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right) \quad \mathrm{R}_{\mathrm{BB}}=2.712 \cdot 10^{4} \\
& \mathrm{I}_{\mathrm{C}}:=\frac{\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{m}}-\mathrm{V}_{\mathrm{BE}}}{\frac{\mathrm{R}_{\mathrm{E}}}{\alpha}+\frac{\mathrm{R}_{\mathrm{BB}}}{\beta}} \quad \mathrm{I}_{\mathrm{C}} \cdot 1000=2 \\
& \mathrm{~V}_{\mathrm{CB}}:=\left(\mathrm{V}_{\mathrm{p}}-\mathrm{I}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{C}}\right)-\left(\mathrm{V}_{\mathrm{m}}+\frac{\mathrm{I}_{\mathrm{C}}}{\alpha} \cdot \mathrm{R}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE}}\right) \quad \mathrm{V}_{\mathrm{CB}}=9.338
\end{aligned}
$$

