\qquad
Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of two problems. Draw a box around all numerical answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials

Formula summary: $\alpha=\beta /(1+\beta), r_{\pi}=V_{T} / I_{B}, g_{m}=I_{C} / V_{T}, r_{e}=V_{T} / I_{E}, r_{e}^{\prime}=(1-\alpha) R_{t b}+r_{e}$, $r_{0}=\left(V_{A}+V_{C E}\right) / I_{C}, I_{C(n p n)}=I_{S} \exp \left(V_{B E} / V_{T}\right), I_{C(p n p)}=I_{S} \exp \left(V_{E B} / V_{T}\right), I_{C}=\alpha I_{E}=\beta I_{B}$

1. The figure shows a differential amplifier. It is given that $R_{B}=1 \mathrm{k} \Omega, R_{C}=10 \mathrm{k} \Omega, I_{Q}=1 \mathrm{~mA}$, $V_{C E}=10 \mathrm{~V}, V_{A}=\infty, V_{T}=25 \mathrm{mV}$, and $\beta=99$.
(a) What are the numerical values of $g_{m}, r_{\pi}, r_{0}, r_{e}$, and r_{e}^{\prime} ?
(b) Draw the simplified small-signal T model and use it to solve for the numerical values of $i_{e 1}^{\prime}$ and $i_{e 2}^{\prime}$ as functions of $v_{i 1}$ and $v_{i 2}$
(c) Use the solution for $i_{e 1}^{\prime}$ and $i_{e 2}^{\prime}$ to solve for the numerical values of $v_{o 1}$ and $v_{o 2}$ as functions of $v_{i 1}$ and $v_{i 2}$.

$$
\mathrm{R}_{\mathrm{B}}:=1000 \quad \mathrm{R}_{\mathrm{C}}:=10000 \quad \mathrm{I}_{\mathrm{Q}}:=0.001 \quad \mathrm{~V}_{\mathrm{CE}}:=10 \quad \mathrm{~V}_{\mathrm{T}}:=0.025 \quad \beta:=99
$$

$$
\alpha:=\frac{\beta}{1+\beta} \quad \alpha=0.99
$$

$$
\mathrm{g}_{\mathrm{m}}:=\frac{\alpha \cdot \mathrm{I}_{\mathrm{Q}}}{2 \cdot \mathrm{~V}_{\mathrm{T}}} \quad \mathrm{~g}_{\mathrm{m}}^{-1}=50.505 \quad \mathrm{r}_{\mathrm{e}}:=\frac{2 \cdot \mathrm{~V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{Q}}} \quad \mathrm{r}_{\mathrm{e}}=50 \quad \mathrm{r}_{\mathrm{e}}^{\prime}:=\frac{\mathrm{R}_{\mathrm{B}}}{1+\beta}+\mathrm{r}_{\mathrm{e}} \quad \mathrm{r}^{\prime} \mathrm{e}=60
$$

$$
i_{e 1}^{\prime}=\frac{v_{i 1}-v_{i 2}}{2 \cdot r_{e}^{\prime}} \quad i^{\prime}{ }_{e 1}=\frac{v_{i 1}-v_{i 2}}{120} \quad i^{\prime} e_{2}=-i^{\prime} e 1 \quad \quad A_{v}:=\frac{-\alpha \cdot R_{C}}{2 \cdot r^{\prime} e} \quad A_{v}=-82.5
$$

$$
\mathrm{v}_{\mathrm{o} 1}=\mathrm{A}_{\mathrm{v}} \cdot\left(\mathrm{v}_{\mathrm{i} 1}-\mathrm{v}_{\mathrm{i} 2}\right) \quad \mathrm{v}_{\mathrm{o} 1}=-82.5 \cdot\left(\mathrm{v}_{\mathrm{i} 1}-\mathrm{v}_{\mathrm{i} 2}\right) \quad \mathrm{v}_{\mathrm{o} 2}=-\mathrm{v}_{\mathrm{o} 1} \quad \mathrm{v}_{\mathrm{o} 2}=82.5 \cdot\left(\mathrm{v}_{\mathrm{i} 1}-\mathrm{v}_{\mathrm{i} 2}\right)
$$

2. The figure shows a complementary CC amplifier. Each BJT has the saturation current $I_{S}=3 \times 10^{-14} \mathrm{~A}$. Assume $V_{T}=0.025 \mathrm{~V}$.
(a) If cutin is defined as the base-emitter voltage at which the collector current is 0.2 mA , solve for the numerical value of the cutin voltage for the two transistors.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{S}}:=3 \cdot 10^{-14} \quad \mathrm{~V}_{\mathrm{T}}:=0.025 \quad \mathrm{I}_{\mathrm{C}}:=0.0002 \quad \mathrm{~V}_{\mathrm{BE} 1}:=\mathrm{V}_{\mathrm{T}} \cdot \ln \left(\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{S}}}\right) \quad \mathrm{V}_{\mathrm{BE}}=0.7 \\
& \mathrm{~V}_{\mathrm{EB} 2}:=\mathrm{V}_{\mathrm{BE} 1}
\end{aligned}
$$

(b) Sketch and label the graph of v_{O} versus v_{I}. See the Class Notes.
(c) If v_{I} is a sine wave of amplitude $V_{1}>V_{\gamma}$, sketch and label the waveform of v_{O} versus time. See the Class Notes.

