\qquad
Instructions. Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of two problems. Draw a box around all answers. Honor Code Statement: I have neither given nor received help on this quiz. Initials

1. Use superposition of $v_{i 1}$ and $v_{i 2}$ to solve for v_{o} as a function of $v_{i 1}$ and $v_{i 2}$.

$$
v_{o}=\frac{R_{2}}{R_{1}+R_{2}}\left(1+\frac{R_{4}}{R_{3}}\right) v_{i 1}-\frac{R_{4}}{R_{3}} v_{i 2}
$$

2. (a) What is the gain of the circuit at very low frequencies?

$$
\frac{V_{o}}{V_{i}}=-\frac{R_{2}}{R_{1}}
$$

(b) What is the gain of the circuit at very high frequencies?

$$
\frac{V_{o}}{V_{i}}=-\frac{R_{2} \| R_{3}}{R_{1}}
$$

(c) Sketch the expected Bode magnitude plot using log-log scales: (i) First sketch the straight-line asymptotes and label the slopes in decades per decade. (ii) Label the gains on any straight-line asymptotes that have a zero slope. (iii) Label any pole and zero frequencies, respectively, with the labels $\omega_{p n}$ and $\omega_{z m}$, where n and m are index integers. It is a low-pass shelving transfer function with $\omega_{p}<\omega_{z}$.
(d) Finally, use the inverting op-amp gain formula to solve for the transfer function for V_{o} / V_{i} : (i) Express the transfer function as a gain constant K multiplied by terms of the form $1+s / \omega_{z}$ and/or divided by terms of the form $1+s / \omega_{p}$. (ii) Give the expressions for K, the ω_{z}, and the ω_{p}.

$$
\begin{gathered}
\frac{V_{o}}{V_{i}}=-\frac{R_{2} \|\left(R_{3}+1 / C s\right)}{R_{1}}=K \frac{1+s / \omega_{z}}{1+s / \omega_{p}} \\
K=-\frac{R_{2}}{R_{1}} \quad \omega_{p}=\frac{1}{\left(R_{2}+R_{3}\right) C} \quad \omega_{z}=\frac{1}{R_{3} C}
\end{gathered}
$$

