(c) Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

The FET Bias Equation

Basic Bias Equation

(a) Look out of the 3 MOSFET terminals and replace the circuits with Thévenin equivalent circuits as showin in Fig. 1.

Figure 1: Basic bias circuit.
(b) Solve the FET drain current equation for $V_{G S}$.

$$
V_{G S}=\sqrt{\frac{I_{D}}{K}}+V_{T O}
$$

(c) Write the gate-source loop equation in the gate-source loop and let $I_{S}=I_{D}$.

$$
V_{G G}-V_{S S}=V_{G S}+I_{S} R_{S S}=V_{G S}+I_{D} R_{S S}
$$

(d) Solve the loop equation for $V_{G S}$.

$$
V_{G S}=V_{G G}-V_{S S}-I_{D} R_{S S}
$$

(e) Equate the two expressions for $V_{G S}$ and rearrange the terms to obtain a quadratic equation in $\sqrt{I_{D}}$.

$$
I_{D} R_{S S}+\sqrt{\frac{I_{D}}{K}}-\left(V_{G G}-V_{S S}-V_{T O}\right)=0
$$

(f) Let $a=R_{S S}, b=1 / \sqrt{K}$, and $c=-\left(V_{G G}-V_{S S}-V_{T O}\right)$. In this case, the bias equation becomes

$$
a I_{D}+b \sqrt{I_{C}}+c=0
$$

Use the quadratic equation to solve for $\sqrt{I_{D}}$, then square the result to obtain

$$
I_{D}=\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right)^{2}
$$

Note that there is a second solution using the minus sign for the radical. This solution results in $V_{G S}<V_{T O}$, which is a non realizable solution. The desired solution is the one which gives the smaller value of I_{D}.
(e) Check for the active mode. For the active mode, $V_{D S}>V_{G S}-V_{T O}=\sqrt{I_{D} / K}$.

$$
V_{D S}=V_{D}-V_{S}=\left(V_{D D}-I_{D} R_{D D}\right)-\left(V_{S S}+I_{S} R_{S S}\right)=V_{D D}-V_{S S}-I_{D}\left(R_{D D}+R_{S S}\right)
$$

Example 1

Figure 2: Circuit for Example 1.

$$
\begin{gathered}
V_{G G}=\frac{V^{+} R_{2}+V^{-} R_{1}}{R_{1}+R_{2}} \quad R_{G G}=R_{1} \| R_{2} \\
V_{S S}=V^{-} \quad R_{S S}=R_{S} \quad V_{D D}=V^{+} \quad R_{D D}=R_{D}
\end{gathered}
$$

Example 2

Figure 3: Circuit for Example 2.

$$
\begin{gathered}
V_{G G}=V^{+} \frac{R_{2}}{R_{D}+R_{1}+R_{2}}-I_{D} \frac{R_{D}}{R_{D}+R_{1}+R_{2}} R_{2} \quad R_{G G}=\left(R_{1}+R_{D}\right) \| R_{2} \\
V_{D D}=V^{+} \frac{R_{1}+R_{2}}{R_{D}+R_{1}+R_{2}} \quad R_{D D}=R_{D} \|\left(R_{1}+R_{2}\right) \\
V_{S S}=0 \quad R_{S S}=R_{S}
\end{gathered}
$$

The gate-source loop equation is

$$
V^{+} \frac{R_{2}}{R_{D}+R_{1}+R_{2}}-I_{D} \frac{R_{D}}{R_{D}+R_{1}+R_{2}} R_{2}=V_{G S}+I_{D} R_{S}
$$

This can be solved for $V_{G S}$ and equated to $\sqrt{I_{D} / K}+V_{T O}$ to obtain

$$
I_{D}\left(R_{S}+\frac{R_{D} R_{2}}{R_{D}+R_{1}+R_{2}}\right)+\sqrt{\frac{I_{D}}{K}}-\left(\frac{V^{+} R_{2}}{R_{D}+R_{1}+R_{2}}-V_{T O}\right)=0
$$

The a, b, and c in the bias equation are given by

$$
a=R_{S}+\frac{R_{D} R_{2}}{R_{D}+R_{1}+R_{2}} \quad b=\frac{1}{\sqrt{K}} \quad c=-\left(\frac{V^{+} R_{2}}{R_{D}+R_{1}+R_{2}}-V_{T O}\right)
$$

Example 3

Figure 4: Circuit for Example 3.

$$
\begin{gathered}
V_{G G}=\frac{V^{+} R_{2}}{R_{1}+R_{2}} \quad R_{G G}=R_{1} \| R_{2} \\
V_{S S}=V^{+} \frac{R_{S}}{R_{D}+R_{3}+R_{S}}-I_{D} \frac{R_{D}}{R_{D}+R_{3}+R_{S}} R_{S} \quad R_{S S}=R_{S} \|\left(R_{D}+R_{3}\right) \\
V_{D D}=V^{+} \frac{R_{3}+R_{S}}{R_{D}+R_{3}+R_{S}}+I_{S} \frac{R_{S}}{R_{D}+R_{3}+R_{S}} R_{D} \quad R_{D D}=R_{D} \|\left(R_{3}+R_{S}\right)
\end{gathered}
$$

Let $I_{S}=I_{D}$. The bias equation for I_{D} is

$$
\frac{V^{+} R_{2}}{R_{1}+R_{2}}-\left(V^{+} \frac{R_{S}}{R_{D}+R_{3}+R_{S}}-I_{D} \frac{R_{D}}{R_{D}+R_{3}+R_{S}} R_{S}\right)=\sqrt{\frac{I_{D}}{K}}+V_{T O}+I_{D}\left[R_{S} \|\left(R_{D}+R_{3}\right)\right]
$$

which gives

$$
I_{D}\left(R_{S} \|\left(R_{D}+R_{3}\right)-\frac{R_{D} R_{S}}{R_{D}+R_{3}+R_{S}}\right)+\sqrt{\frac{I_{D}}{K}}-\left(\frac{V^{+} R_{2}}{R_{1}+R_{2}}-\frac{V^{+} R_{S}}{R_{D}+R_{3}+R_{S}}-V_{T O}\right)=0
$$

The a, b, and c in the bias equation are given by

$$
\begin{gathered}
a=R_{S} \|\left(R_{D}+R_{3}\right)-\frac{R_{D} R_{S}}{R_{D}+R_{3}+R_{S}} \quad b=\sqrt{\frac{1}{K}} \\
c=-\left(\frac{V^{+} R_{2}}{R_{1}+R_{2}}-\frac{V^{+} R_{S}}{R_{D}+R_{3}+R_{S}}-V_{T O}\right)
\end{gathered}
$$

Figure 5: Circuit for Example 4.

Example 4

For M_{1}

$$
\begin{gathered}
V_{G G 1}=V^{+} \frac{R_{2}}{R_{1}+R_{2}} \quad R_{G G 1}=R_{1} \| R_{2} \quad V_{S S 1}=0 \quad R_{S S 1}=R_{S 1} \\
V_{D D 1}=V^{+} \quad R_{D D 1}=R_{D 1}
\end{gathered}
$$

The loop equation for $I_{D 1}$ is

$$
V^{+} \frac{R_{2}}{R_{1}+R_{2}}=V_{G S 1}+I_{D 1} R_{S}
$$

This and the equation for $V_{G S 1}$ can be solved for $I_{D 1}$.
For M_{2}

$$
\begin{gathered}
V_{G G 2}=V^{+}-I_{D 1} R_{D 1} \quad R_{G G 2}=R_{D 1} \\
V_{S S 2}=0 \quad R_{S S 2}=R_{S 2} \quad V_{D D 2}=V^{+} \quad R_{D D 2}=R_{D 2}
\end{gathered}
$$

The loop equation for $I_{D 2}$ is

$$
V^{+}-I_{D 1} R_{D 1}=V_{G S 2}+I_{D 2} R_{S 2}
$$

This and the equation for $V_{G S 2}$ can be solve for $I_{D 2}$.
Given $I_{D 1}$ and $I_{D 2}$, it can be determined if the two MOSFETs are in the active mode.

Example 5

$$
\begin{gathered}
V_{G G 1}=V^{+} \frac{R_{2}}{R_{1}+R_{2}} \quad R_{G G 1}=R_{1} \| R_{2} \quad V_{S S 1}=0 \quad R_{S S 1}=R_{S 1} \\
V_{G G 2}=I_{S 1} R_{S 1} \quad R_{G G 2}=R_{S 1} \quad V_{S S 2}=0 \quad R_{S S 2}=R_{S 2} \quad V_{D D 2}=V^{+} \quad R_{D D 2}=R_{D 2}
\end{gathered}
$$

Let the currents to be solved for be $I_{D 1}$ and $I_{D 2}$ and let $I_{S 1}=I_{D 1}$ and $I_{S 2}=I_{D 2}$.
The gate-source loop equation for $I_{D 1}$ is

$$
V^{+} \frac{R_{2}}{R_{1}+R_{2}}=V_{G S 1}+I_{D 1} R_{S 1}
$$

This and the equation for $V_{G S 1}$ can be solved for $I_{D 1}$.
The gate-source loop equation for $I_{D 2}$ is

$$
I_{D 1} R_{S 1}=V_{G S 2}+I_{D 2} R_{S 2}
$$

Given $I_{D 1}$ and $I_{D 2}$, it can be determined if the two MOSFETs are in the active mode.

Figure 6: Circuit for Example 5.

