© Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

The FET Differential Amplifier

Basic Circuit

Fig. 1 shows the circuit diagram of a MOSFET differential amplifier. The tail supply is modeled as a current source I'_Q having a parallel resistance R_Q . In the case of an ideal current source, R_Q is an open circuit. Often a diff amp is designed with a resistive tail supply. In this case, $I'_Q = 0$. The object is to solve for the small-signal output voltages and output resistance.

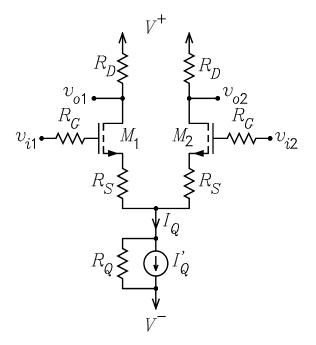


Figure 1: MOSFET differential amplifier.

DC Solutions

(a) Zero both inputs. Divide the tail supply into two equal parallel current sources having a current $I'_Q/2$ in parallel with a resistor $2R_Q$. The circuit obtained for M_1 is shown on the left in Fig. 2. The circuit for M_2 is identical. Now make a Thévenin equivalent as shown in on the right in Fig. 2. This is the basic bias circuit.

(e) With $V_{GG} = 0$, $V_{SS} = V^- - I'_Q R_Q$, and $R_{SS} = R_S + 2R_Q$, the bias equation from the FET bias notes is

$$I_D (R_S + 2R_Q) + \sqrt{\frac{I_D}{K}} - \left[0 - \left(V^- - I'_Q R_Q\right) - V_{TO}\right] = 0$$

(f) Let $a = R_{SS}$, $b = 1/\sqrt{K}$, and $c = -\left[0 - \left(V^{-} - I'_{Q}R_{Q}\right) - V_{TO}\right]$. Use the quadratic equation

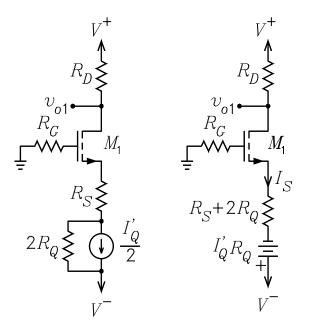


Figure 2: DC bias circuit for M_1 .

to solve for $\sqrt{I_D}$, then square the result to obtain

$$I_D = \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right)^2$$

Note that there is a second solution using the minus sign for the radical. This solution results in $V_{GS} < V_{TO}$, which is a non realizable solution. The desired solution is the one which gives the smaller value of I_D .

(e) Check for the active mode. For the active mode, $V_{DS} > V_{GS} - V_{TO} = \sqrt{I_D/K}$.

$$V_{DS} = V_D - V_S = (V_{DD} - I_D R_{DD}) - V_S = (V_{DD} - I_D R_{DD}) - \left(\sqrt{\frac{I_D}{K}} - V_{TO}\right)$$

(f) If $R_Q = \infty$, it follows that $I_{D1} = I_{D2} = I'_Q/2$.

Small-Signal or AC Solutions

The solutions assume that the two FETs are matched.

(a) Calculate g_m and r_s .

$$g_m = 2\sqrt{KI_D}$$
 $r_s = \frac{1}{g_m}$

(b) Redraw the circuit with $V^+ = V^- = 0$ and $I'_Q = 0$. Replace the two FETs with the simple T model. The source part of the circuit obtained is shown in 3.

(c) Solve for i'_{s1} and i'_{s2} .

$$i_{s1}' = \frac{v_{i1}}{r_s + R_S + R_Q \| \left(r_s + R_S \right)} - \frac{v_{i2}}{r_s + R_S + R_Q \| \left(r_s + R_S \right)} \frac{R_Q}{R_Q + r_s + R_S}$$

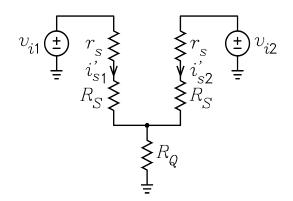


Figure 3: Source equivalent circuit for $r_0 = \infty$.

$$i'_{s2} = \frac{v_{i2}}{r_s + R_S + R_Q \| (r_s + R_S)} - \frac{v_{i1}}{r_s + R_S + R_Q \| (r_s + R_S)} \frac{R_Q}{R_Q + r_s + R_S}$$

(d) Solve for v_{o1} , v_{o2} , r_{out1} , and r_{out2} from the drain equivalent circuits.

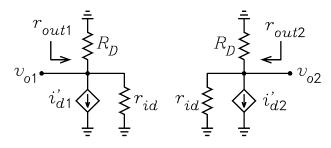


Figure 4: Drain equivalent circuits.

$$v_{o1} = -i'_{d1}r_{id} \|R_D = -i'_{s1}r_{id} \|R_D = \frac{-r_{id} \|R_D}{r_s + R_S + R_Q \|(r_s + R_S)} \left(v_{i1} - v_{i2} \frac{R_Q}{R_Q + r_s + R_S} \right)$$
$$v_{o2} = -i'_{d2}r_{id} \|R_D = -i'_{s1}r_{id} \|R_D = \frac{-r_{id} \|R_D}{r_s + R_S + R_Q \|(r_s + R_S)} \left(v_{i2} - v_{i1} \frac{R_Q}{R_Q + r_s + R_S} \right)$$
$$r_{out1} = r_{out2} = r_{id} \|R_D$$

(e) Special case for $R_Q = \infty$.

$$v_{o1} = \frac{-r_{id} \|R_D}{2(r_s + R_S)} (v_{i1} - v_{i2}) \qquad v_{o2} = \frac{-r_{id} \|R_D}{2(r_s + R_S)} (v_{i2} - v_{i1})$$

(f) To include the body effect in these equations, divide all input voltages by $1 + \chi$ and replace r_s with $r'_s = r_s/(1 + \chi)$, where $\chi = g_{mb}/g_m$ is the transconductance ratio. If $R_S = 0$ and $R_Q = \infty$, the factor $1 + \chi$ cancels out in the equations for v_{o1} and v_{o2} and the body effect goes away.

Common-Mode Rejection Ratio

The CMRR for the BJT differential amplifier was defined with the output taken from only one side of the diff amp. To illustrate another way of defining the CMRR, it will be assumed that the output is taken differentially between the two outputs. In this case, the CMRR is doubled.

(a) Define the differential input and output voltages

$$v_{id} = v_{i1} - v_{i2} \qquad v_{od} = v_{o1} - v_{o2}$$

(b) With $v_{i1} = v_{id}/2$ and $v_{i2} = -v_{id}/2$, use the solutions from above to solve for the differential output voltage v_{od} .

$$\begin{aligned} v_{od} &= v_{o1} - v_{o2} = \frac{-r_{id} \|R_D}{r_s + R_S + R_Q \|(r_s + R_S)} \left(1 + \frac{R_Q}{R_Q + r_s + R_S}\right) \frac{v_{id}}{2} \\ &= \frac{-r_{id} \|R_D}{r_s + R_S + R_Q \|(r_s + R_S)} \frac{2R_Q + r_s + R_S}{R_Q + r_s + R_S} \frac{v_{id}}{2} \end{aligned}$$

Solve for the differential gain A_v .

$$A_{vd} = \frac{v_{od}}{v_{id}} = \frac{1}{2} \frac{-r_{id} \| R_D}{r_s + R_S + R_Q \| (r_s + R_S)} \frac{2R_Q + r_s + R_S}{R_Q + r_s + R_S}$$

(c) Define the common-mode input and output voltages v_{icm} and v_{ocm} .

$$v_{icm} = \frac{v_{i1} + v_{i2}}{2}$$
 $v_{ocm} = \frac{v_{o1} + v_{o2}}{2}$

(d) With $v_{i1} = v_{i2} = v_{icm}$, use the solutions from above to solve for the common-mode output voltage v_{ocm} .

$$v_{ocm} = \frac{v_{o1} + v_{o2}}{2} = \frac{1}{2} \frac{-r_{id} \|R_D}{r_s + R_S + R_Q \| (r_s + R_S)} \left(1 - \frac{R_Q}{R_Q + r_s + R_S}\right) v_{icm}$$
$$= \frac{1}{2} \frac{-r_{id} \|R_D}{r_s + R_S + R_Q \| (r_s + R_S)} \frac{r_s + R_S}{R_Q + r_s + R_S} v_{icm}$$

Solve for the common-mode voltage gain A_{vcm} .

$$A_{vcm} = \frac{v_{ocm}}{v_{icm}} = \frac{1}{2} \frac{-r_{id} \|R_D}{r_s + R_S + R_Q \|(r_s + R_S)} \frac{r_s + R_S}{R_Q + r_s + R_S}$$

(e) Solve for the common-mode rejection ratio.

$$CMRR = \left| \frac{A_{vd}}{A_{vcm}} \right| = \frac{2R_Q + r_s + R_S}{r_s + R_S} = 1 + \frac{2R_Q}{r_s + R_S}$$

Express this in dB.

$$CMRR_{dB} = 20\log\left(1 + \frac{2R_Q}{r_s + R_S}\right)$$

(f) To include the body effect in the equation for CMRR, replace r_s with $r'_s = r_s/(1+\chi)$.

Example 1 For $I_Q = 2 \text{ mA}$, $R_Q = 50 \text{ k}\Omega$, $R_G = 1 \text{ k}\Omega$, $R_S = 100 \Omega$, $R_D = 10 \text{ k}\Omega$, $V^+ = 20 \text{ V}$, $V^- = -20 \text{ V}$, $K = 2.5 \times 10^{-3} \text{ A}/\text{ V}^2$, $V_{TO} = 1.5 \text{ V}$, and $\lambda = 0.01$, calculate v_{o1} , v_{o2} , v_{od} , r_{out} , and CMRR.

Solution.

$$I_{D1} = I_{D2} = \frac{I_Q}{2} = 1 \text{ mA} \qquad V_{GS} = V_{TO} + \sqrt{\frac{I_D}{K}} = 2.132 \text{ V}$$
$$V_{DS} = V_D - V_S = \left(V^+ - \frac{I_Q}{2}R_D\right) - (-V_{GS}) = 12.13 \text{ V}$$

$$g_m = 2\sqrt{KI_D} = 3.162 \text{ mS} \qquad r_s = \frac{1}{g_m} = 316.23 \,\Omega \qquad r_0 = \frac{\lambda^{-1} + V_{DS}}{I_D} = 112.1 \,\mathrm{k\Omega}$$

$$R_{ts} = R_S + R_Q \| (r_s + R_S) = 512.79 \,\Omega \qquad r_{id} = r_0 \left(1 + \frac{R_{ts}}{r_s}\right) + R_{ts} = 294.5 \,\mathrm{k\Omega}$$

$$v_{o1} = \frac{-r_{id} \| R_D}{r_s + R_S + R_Q \| (r_s + R_S)} \left(v_{i1} - v_{i2} \frac{R_Q}{R_Q + r_s + R_S}\right) = -11.67 v_{i1} + 11.57 v_{i2}$$

$$v_{o2} = -11.67 v_{i2} + 11.57 v_{i1}$$

$$v_{od} = v_{o1} - v_{o2} = -23.24 (v_{i1} - v_{i2}) \qquad r_{out} = r_{id} \| R_D = 9.672 \,\mathrm{k\Omega}$$

$$v_{ocm} = \frac{v_{o1} + v_{o2}}{2} = -0.096 v_{icm}$$

$$A_{vd} = \frac{-r_{id} \| R_D}{r_s + R_S + R_Q \| (r_s + R_S)} \frac{2R_Q + r_s + R_S}{R_Q + r_s + R_S} = -23.24$$

$$A_{vcm} = \frac{-r_{id} \| R_D}{r_s + R_S + R_Q \| (r_s + R_S)} \frac{r_s + R_S}{R_Q + r_s + R_S} = -0.096$$

$$CMRR_{dB} = 20 \log \left| \frac{A_{vd}}{A_{vcm}} \right| = 47.65 \,\mathrm{dB}$$

The MOSFET Diff Amp with Current-Mirror Load

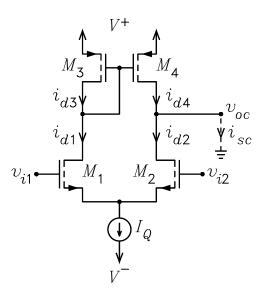


Figure 5: MOSFET diff amp with current-mirror load.

Fig. 5 shows a MOSFET differential amplifier with a current mirror load. If we assume that M_1 and M_2 are matched, the dc current I_Q divides equally between the devices so that $I_{D1} = I_{D2} = I_Q/2$. Thus we can write $g_{m1} = g_{m2} = g_m$. To solve for the open-circuit small-signal output voltage v_{oc} , we first solve for the short-circuit small-signal output current i_{sc} . First, we resolve the inputs into common-mode and differential components. Because a current source is used to bias the sources, the common-mode signal currents in the devices are zero. Therefore, we only need to consider the differential solution. To obtain this, replace v_{i1} with the voltage $v_{id} = (v_{i1} - v_{i2})/2$ and v_{i2} with $-v_{id}$. For the differential inputs, the signal voltage at the sources is zero. Because both the drain and source of M_2 are connected to signal ground, the Early effect is absent in M_2 . Similarly, it is absent for M_4 . Although the drains of M_1 and M_3 are not at signal ground, it would be expected that the small-signal voltage across them is small because M_3 is connected as a diode. Thus it would be expected that the Early effect can be neglected for M_1 and M_3 . In this case, the current i_{sc} can be written by inspection.

When the Early effect is neglected, i_{sc} can be written

$$i_{sc} = i_{d4} - i_{d2} = i_{d3} - i_{d2} = i_{d1} - i_{d2} = 2i_{d1}$$

The latter is because $i_{d2} = -i_{d1}$. To solve for i_{d1} , replace the circuits seen looking into the sources of M_1 and M_2 by small-signal Thévenin equivalent circuits. The circuit is shown in Fig. 3 with $R_S = 0$ and $R_Q = \infty$. It follows that i_{d1} and i_{sc} are given by

$$i_{d1} = \frac{v_{i1} - v_{i2}}{2r_s} = \frac{g_m}{2} \left(v_{i1} - v_{i2} \right) \qquad i_{sc} = 2i_{d1} = g_m \left(v_{i1} - v_{i2} \right)$$

To solve for the small-signal output voltage v_{oc} , we must know the small-signal resistance seen looking into the output terminal. This is calculated with $v_{i1} = v_{i2} = 0$. The resistance seen r_{id4} looking into the drain of M_4 is r_{04} . To determine the resistance r_{id2} seen looking into the drain of M_2 , the Thévenin resistance R_{ts2} seen looking out of its source is required. This is the Thévenin resistance r_{is1} seen looking into the source of M_1 . If r_{01} is neglected, this is given by $r_{is1} = r_{s1} = g_m^{-1}$. Thus r_{id2} is given by

$$r_{id2} = r_{02} \left(1 + \frac{R_{ts2}}{r_{is1}} \right) + R_{ts2} = 2r_{02} + \frac{1}{g_{m2}}$$

It follows that r_{out} and the open-circuit output voltage v_{oc} are given by

$$r_{out} = r_{id3} \| r_{id2} = r_{03} \| \left(2r_{02} + \frac{1}{g_{m2}} \right)$$
$$v_{oc} = i_{sc} r_{out} = g_m \left[r_{03} \| \left(2r_{02} + \frac{1}{g_{m2}} \right) \right] (v_{i1} - v_{i2})$$