Hybrid- π Model with Body Effect

Let the drain current and each voltage be written as the sum of a dc component and a smallsignal ac component as follows:

$$
\begin{align*}
i_{D} & =I_{D}+i_{d} \tag{1}\\
v_{G S} & =V_{G S}+v_{g s} \tag{2}\\
v_{B S} & =V_{B S}+v_{b s} \tag{3}\\
v_{D S} & =V_{D S}+v_{d s} \tag{4}
\end{align*}
$$

If the ac components are sufficiently small, we can write

$$
\begin{equation*}
i_{d}=\frac{\partial I_{D}}{\partial V_{G S}} v_{g s}+\frac{\partial I_{D}}{\partial V_{B S}} v_{b s}+\frac{\partial I_{D}}{\partial V_{D S}} v_{d s} \tag{5}
\end{equation*}
$$

where the derivatives are evaluated at the dc bias values. Let us define

$$
\begin{gather*}
g_{m}=\frac{\partial I_{D}}{\partial V_{G S}}=K\left(V_{G S}-V_{T H}\right)=2 \sqrt{K I_{D}} \tag{6}\\
g_{m b}=\frac{\partial I_{D}}{\partial V_{B S}}=\frac{\gamma \sqrt{K I_{D}}}{\sqrt{\phi-V_{B S}}}=\chi g_{m} \tag{7}\\
\chi=\frac{\gamma}{2 \sqrt{\phi-V_{B S}}} \tag{8}\\
r_{0}=\left[\frac{\partial I_{D}}{\partial V_{D S}}\right]^{-1}=\left[\frac{k^{\prime}}{2} \frac{W}{L} \lambda\left(V_{G S}-V_{T H}\right)^{2}\right]^{-1}=\frac{V_{D S}+1 / \lambda}{I_{D}} \tag{9}
\end{gather*}
$$

The small-signal drain current can thus be written

$$
\begin{equation*}
i_{d}=i_{d g}+i_{d b}+\frac{v_{d s}}{r_{0}} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
i_{d g} & =g_{m} v_{g s} \tag{11}\\
i_{d b} & =g_{m b} v_{b s} \tag{12}
\end{align*}
$$

The small-signal circuit which models these equations is given in Fig. 1. This is called the hybrid- π model.

Figure 1: Hybrid- π model of the MOSFET.

