EE4435 Homework Physical Characteristics of Op-Amps

1. An op-amp has the low-frequency open-loop gain $A_{0}=10^{5}$. The op-amp is to be used in an inverting amplifier with a gain of -2000 . (a) What is the required ratio R_{F} / R_{1} ? [2040.8] (b) For the value of R_{F} / R_{1}, how much larger is the input resistance than R_{1} ? [1.0204 R_{1}]
2. An op-amp has the low-frequency open-loop gain $A_{0}=10^{5}$. The op-amp is to be used in a non-inverting amplifier. The theoretical gain is calculated assuming that the op-amp is ideal. What is the highest theoretical gain that gives an error between the theoretical gain and the actual gain that is less than 5% ? [5263.2]
3. At low frequencies, an op-amp has an open-loop gain $A_{0}=10^{5}$ and an open-loop output resistance $R_{0}=150 \Omega$. The op-amp is to be used in a non-inverting amplifier having a voltage gain of 200 . If the amplifier is designed with the assumption that the op-amp is ideal and the input resistance to the feedback network is to be $100 \mathrm{k} \Omega$, calculate the actual gain of the circuit and its output resistance. [199.60, 0.29940Ω]
4. At low frequencies, an op-amp has an open-loop gain $A_{0}=10^{5}$ and an open-loop output resistance $R_{0}=150 \Omega$. The op-amp is to be used in an inverting amplifier having a voltage gain of -200 . If the amplifier is designed with the assumption that the op-amp is ideal with an amplifier input resistance of $1 \mathrm{k} \Omega$, calculate the actual gain of the circuit and its output resistance. [-199.6, 0.301 Ω]
5. An op-amp has the gain-bandwidth product $f_{x}=1.5 \mathrm{MHz}$. The op-amp is to be used in a non-inverting amplifier circuit. Calculate the highest gain that the amplifier can have if the half-power or -3 dB bandwidth is to be 30 kHz or greater. [-50]
6. Two non-inverting op-amp amplifiers are operated in cascade. Each amplifier has a gain of 20. If each op-amp has the gain-bandwidth product $f_{x}=1.5 \mathrm{MHz}$, calculate the half-power or -3 dB bandwidth of the cascade amplifier. [48.3 kHz]
7. An op-amp has the gain-bandwidth product $f_{x}=1.5 \mathrm{MHz}$. Compare the bandwidths of an inverting and a non-inverting amplifier which use the op-amp if the dB values of the voltage gain magnitude $A_{0 f}$ are $0 \mathrm{~dB}, 10 \mathrm{~dB}, 20 \mathrm{~dB}$, and 30 dB . [Non-inverting: $1.5 \mathrm{MHz}, 4.74 \mathrm{kHz}$, $150 \mathrm{kHz}, 47.4 \mathrm{kHz}$, Inverting: $750 \mathrm{kHz}, 360 \mathrm{kHz}, 136 \mathrm{kHz}, 46 \mathrm{kHz}]$
8. An op-amp has a dc gain $A_{0}=10^{5}$ and a gain bandwidth product $f_{x}=1.5 \mathrm{MHz}$. The opamp is used in an inverting amplifier with the element values $R_{1}=1.5 \mathrm{k} \Omega$ and $R_{F}=75 \mathrm{k} \Omega$. Calculate the dc gain of the amplifier, the upper cutoff frequency, and the value of the elements in the equivalent circuit for the input impedance. [$-49.98,29.4 \mathrm{kHz}, R_{2}=0.75 \Omega$, $L=7.96 \mathrm{mH}]$
9. The op-amp in the preceding problem has an open-loop output resistance $R_{0}=150 \Omega$. Calculate the value of the elements in the equivalent circuit for the output impedance. [$\left.R_{2}=150 \Omega, L=811 \mu \mathrm{H}\right]$
10. An op-amp has the saturation voltages $V_{S A T}^{+}=V^{+}-3 \mathrm{~V}$ and $V_{S A T}^{-}=V^{-}+3 \mathrm{~V}$, where $V^{+}=$ 15 V and $V^{-}=-15 \mathrm{~V}$. The current limited output current is $I_{M}=30 \mathrm{~mA}$. (a) Determine the lowest load resistance that can be driven to full output without current limiting. (b) Determine the peak output voltage for a load resistance of 75Ω. (c) The op-amp is used
to realize a non-inverting amplifier with a gain of 5 . The input waveform is a square wave with a peak value of 1 V . Sketch the plot of the output voltage waveform for a capacitive load of value $C_{L}=1 \mu \mathrm{~F}$. Assume that the op-amp does not slew. [$400 \Omega, 2.25 \mathrm{~V}$, slopes are $\pm 3 \times 10^{4} \mathrm{~V} / \mathrm{s}$]
11. The op-amp in the preceding problem has a slew rate of $0.75 \mathrm{~V} / \mu \mathrm{s}$. (a) Calculate the fullpower bandwidth of the op-amp. (b) Calculate the peak value of the largest amplitude sine-wave that the op-amp can put out at frequency of 30 kHz if it is not to slew. (c) Calculate the largest peak-to-peak signal that the op-amp can put out at 30 kHz . Hint, assume that the amplitude of the input signal is increased until the output voltage waveform is fully converted into a triangle wave. $[9.95 \mathrm{kHz}, 6.25 \mathrm{~V}]$
12. A non-inverting amplifier with feedback resistors R_{F} and R_{1} has a resistor R_{2} in series with its non-inverting input. The op-amp has the input bias current I_{B}. Solve for the dc component of the output voltage due to I_{B}. Assume that $A_{0} \rightarrow \infty, I_{O S}=0$, and $V_{O S}=0$. $\left[\left(1+R_{F} / R_{1}\right) I_{B}\left(R_{2}-R_{1} \| R_{F}\right)\right]$
13. A non-inverting op-amp with feedback resistors $R_{F}=100 \mathrm{k} \Omega$ and $R_{1}=1 \mathrm{k} \Omega$ has a dc offset voltage of 1 V at its output when $v_{I}=0$. (a) If the input offset current and input bias current can be neglected, calculate the input offset voltage $V_{O S}$. (b) If the input offset voltage and input bias current can be neglected, calculate the input offset current $I_{O S}$. (c) If the input offset voltage and input offset current can be neglected, calculate the input bias current I_{B}. $[9.9 \mathrm{mV}, 20 \mu \mathrm{~A}, 10 \mu \mathrm{~A}]$
14. A non-inverting amplifier has a resistor R_{1} in series with the + input and feedback resistors R_{2} and R_{F}. A series resistor R_{3} and capacitor C are connected between the + and - inputs. Show that the effective open-loop transfer function is given by

$$
A^{\prime}(s)=A(s) \frac{1+R_{3} C s}{1+\left(R_{1}+R_{2} \| R_{F}+R_{3}\right) C s}
$$

Thus the $R_{3}-C$ network adds a pole-zero pair to the transfer function. Using a Bode plot, show how this can improve the stability of an amplifier when $A(s)$ has more than one pole below the unity-gain frequency.

