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A Study of the Applications of Analog Computers

V. P. KODALI, MEMBER, IEEE

Abstract-An electronic analog computer is a tool for solving
mathematical differential equations. The basis for the use of such a
computer in the simulation of many scientific and engineering prob-
lems is the possibility of characterizing these situations as formal
mathematical systems by using differential equations. In this paper,
following a brief description of the computing elements, the applica-
tions of analog computers in the study of various linear, nonlinear,
and time-varying systems are described with typical illustrative ex-
amples from diverse fields of interest. Computer applications in solv-
ing partial differential equations are also discussed. Potential capa-
bilities and limitations of this type of computer as an aid in research
and analysis are given.

INTRODUCTION

ANY TWO SYSTEMVIS are said to be the analogs of
each other if their activity permits itself to be
described by similar mathematical formalism or

set of equations. Accordingly, the study of analogs is,
to a large extent, a mathematical study. It is apparent
that different devices or systems could be mutually
analogous without necessarily bearing any physical re-
semblance. In fact, the analogs of many hydraulic,
pneumatic, mechanical, and electrical or electronic
phenomena exist in other disciplines of study. A variety
of problems associated with these and other physical
systems lend themselves to the use of analog computers
in their analysis, simulation, and design. A treatment
of the principles of operation of analog computers is
therefore a matter of interest to many.
Study of physical systems using the electronic analog

computers is broadly understood as involving two
stages. In the first stage, the problem is characterized
or mathematically described by using differential equa-
tions. Simpler situations may be described through a
single equation. But more complex systems, in general,
lead to a set or sets of simultaneous differential equa-
tions. The second stage consists in translating these
mathematical equations into computer circuits and
transferring them on to the analog computer. An analog
computer is best suited for solving systems of ordinary
differential equations, linear or nonlinear, with constant
or time-varying coefficients. Analog computers have
also been used, with some success in the past, to solve
problems involving partial differential equations.

This paper is a theoretical study and provides an
introductory account about analog computers and their
application to the study of engineering systems and
physical phenomena. One can hardly hope to gain a
complete understanding of the role of this class of
computers in the study of systems from a brief sum-

mary. Consequently, no attempt is made at complete-
ness. Instead, some rather simple but typical problems
are considered as examples to present a unified account
of the use of analog computers. Here, the approach will
be to group various systems into three broad categories.
The classification is based on the type of the differential
equation, which characterizes the system. Under each
class, a variety of physical systems will be considered
and their representation on the analog computer de-
duced. A brief description of various analog computer
components precedes this study. The paper concludes
with a discussion of some general limitations to the use
of analog computers.

THE COMPUTING ELEMENTS

The principal component in an analog computer is
the operational amplifier [i]- [6], which is essentially
a direct coupled amplifier with very high open-loop
gain. Open-loop dc-to-dc gains of the order of 100 000
are typical in better equipment. When two imped-
ances Zi and Zf are connected to such an amplifier as
shown in Fig. 1(a), it can be shown [7 ] that the input
and output voltages to the circuit are related by

eO= - ei (1)

Thus, the quantity Zf/Zi acts as an operator on the
input voltage ei to produce the output eO. When Zf and
Zi are chosen to be two resistors, the operator simply
becomes a multiplying constant and (1) takes the form

eo = - ei.
/i

(1 a)

This type of circuit is known as the inverting amplifier
because of the phase inverting property (negative sign)
associated with it. Most inverting amplifiers, which are
part of the standard computing setup, usually have
multiplication constants of 1, 4, and 10. Other values
may be realized by using potentiometers in conjunction
with the amplifiers. The governing equation for a
potentiometer is given by

eO= Pei, (lb)

where the quantity p is continuously variable between
the limits of 0 and 1.

In general, the amplifier may have more than one
input port as shown in Fig. 1(d). The result is a sum-
ming amplifier, whose output eO is given by
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Fig. 1. Computing elements and their symbolic representation. (a)
High gain dc amplifier with feedback and input impedances.
(b) Symbol for multiplying-inverting amplifier. (c) Symbol for
the potentiometer. (d) Summing amplifier. (e) Symbol for sum-
ming amplifier. (f) Integrating amplifier (IC denotes the initial
conditions). (g) Symbol for the integrator. (h) Symbol for a func-
tion generator. (i) Schematic of a servo-multiplier (broken line
indicates mechanical but no electrical connection). (j) Symbol
for function multiplier.

When a capacitor of impedance l/sC and a resistor
of resistance Ri are connected for Zf and Zi, respec-
tively, as shown in Fig. l(f), then

1 1 -t
e,o ~ e = ~Iei-dt + IC.

RiCs RiC .J
(id)

This connection, therefore, enables the use of the opera-
tional amplifier as an integrating amplifier. The quan-
tity IC in (1d) denotes the constants of integration.
This "initial condition" is introduced into the electronic
circuit as the charge across the capacitor at the start of
the problem.
At least in theory, it is possible to use the operational

amplifier to perform mathematical differentiation by
connecting a resistor in the place of Zf and a capacitor
in the place of Zi. This is, however, avoided in actual
practice because of the undesirable noise amplification
property associated with such a type of circuit [2], [61.
A number of function generators and multipliers are

included in the class of nonlinear computing elements.
These may be electrical or mechanical devices or a com-

bination of the two. One of the most commonly used
of such devices is the servo-driven multiplier, sketched
in Fig. 1(i). A typical servo multiplier consists of at
least two multi-turn identical potentiometers, whose
shafts are ganged and coupled to the rotor shaft of a
servo motor. The shaft of the motor, which is actuated
by one of the input signals el, rotates and sets the arm
of the first potentiometer, called the "follow-up" or the
"error-sensing" potentiometer, to indicate a voltage
e=ei. Since the shafts of the potentiometers are me-
chanically (but not electrically) coupled, the angular
shift in the position of each potentiometer shaft is the
same. Hence, the rotating arm of the second potentiom-
eter, called the multiplying potentiometer, is set at a
point which corresponds to an output voltage e0 = ele2/E.
Here, e2 is the voltage applied to the multiplying
potentiometer and E is the reference voltage (usually
100 volts) applied to the follow-up potentiometer. This
setup thus enables the mathematical multiplication of
the two quantities represented by el and e2.

Time-division multipliers and quarter-square multi-
pliers are the other frequently used multiplying devices.
The latter are known to possess better frequency re-
sponse and provide higher accuracy [1], [8].

LINEAR SYSTEMS WITH TIME-INVARIANT ELEMENTS

As an example of a simple mathematical system, the
following selcond-order linear differential equation' with
constant coefficients is considered.

my + ny + ky = F. (2)

Equation (2) is typical of the type that is often en-
countered in the study of servomechanisms or in the
study of many basic mechanical systems like the recti-
linear system with a single rigid mass, a linear restoring
spring, and viscous damper. The following two com-
ments help in understanding the derivation of the
computer circuit, which is used to simulate the system
given in (2).

1) The equation is rewritten as

F n k
y= -----y

m m m
(2a)

from which, we observe that y may be obtained by
algebraically adding the three quantities F/m,
- (n/m)y, and - (k/m)y.

2) y and y are computed by integrating y once and
twice, respectively.

The computer diagram is shown in Fig. 2.
Subject to appropriate simplifying assumptions, a

large number of problems involving the study of
torsional vibrations of a disk connected at the end of a
shaft, the oscillations of a cantilever supporting a mass
at its free end, the unbalance in a rotating machine,

1 The notations y and y are used to denote the first and second
derivatives of y with respect to time.
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Fig. 2. Computer circuit for solving the equation myi+ny+ky= F. Potentiometer settings: P1=1/m; P2=k/m; P3=n/m.

Fig. 3. Computer circuit for solving the simultaneous differential equations given in (3). Potentiometer settings: PI= 1/mi; P2=klmi;
P3 = nl/ml; P4 = b2/ml; P5 = a2/ml; P6 = a/m2; P7 = bl/m2; P8 = k2/M2; P9 = n2/m2.

and the disturbance suffered by a spring-loaded flyball
governor rotating with a constant angular velocity re-
duce to the mathematical system given in (2) [9]- [II].
Analog computers can also be used to solve simul-

taneous differential equations. Figure 3 gives a computer
circuit for solving the following set of simultaneous
differential equations.

mj1+j nyi - a2y2 + kly1 - b2y2 = F

m2y2 + n2y2- ai)i + k2y2- b1y1 = 0. (3)

Here two circuits are set tup, each solving one differential
equation, and then interconnections between the two
circuits are made as required.

In practice, a set of simultaneous differential equa-
tions represent systems with more than one degree of
freedom. The oscillatory motion of a dynamic absorber
with viscous damping or similar mechanically coupled
systems, a number of thermal systems involving heat
transfer, many problems in automatic control and flight
simulation, and an amplidyne system consisting of
rotating machinery are some examples of the physical
systems that are mathematically described by sets of
simultaneous differential equations [9 ], [12 ]. The num-
ber of equations in each case depends on the number of
degrees of freedom. A derivation of the corresponding
computer diagram, simply, consists in drawing one cir-

3



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, APRIL 1967

-F

Fig. 4. Computer circuit for solving the nonlinear differential equation y+cy+k(sin y) = F. Potentiometer settings: P1= 1.0; P2=c; P3=k.

cuit for each equation and then making the necessary
interconnections.

NONLINEAR SYSTEMS

The situations discussed so far have the mathematical
representation described by ordinary linear differential
equations with constant coefficients. Normally, such
equations represent ideal systems. In reality, however,
many physical systems possess some form of nonlinear-
ity or periodic fluctuation [13]-[15]. Consequently,
many of the examples cited in the above section will,
in fact, need to be considered as nonlinear systems un-
less a number of simplifying assumptions are made.
Some of the more common forms of nonlinearities in-
clude saturation, dead-zone, coulomb friction, and
hysteresis. A variety of special electronic circuits useful
in simulating these and other types of nonlinear phe-
nomena are described in the literature [6], [12], [161.
These function generators make use of relays, diode
circuits, etc., in conjunction with the computing ele-
ments listed in Fig. 1.

Nonlinear springs and viscous dampers are inherent
in many mechanical systems, a typical example being
a spring-damper assembly with a nonlinear restoring
spring. The vibrations in such an assembly due to an
external disturbing force F(t) are described by Duffing's
equation

my + cy + k(y)y = F(t), (4)

where m, c, and k(y) are the mass, viscous friction, and
the spring constant of the mechanical assembly, re-
spectively. Here k(y) is a nonlinear function of the dis-
placement y.

Figure 4 gives a computer circuit for solving the
nonlinear differential equation

y + cy + k(sin y) = F. (5)

This equation describes the oscillations of a simple
pendulum suspended by a massless, inelastic thread
when its amplitude of oscillation is not restricted to be
small. An analogous equation arises in studies concern-
ing the stability of synchronous motors [17], [7].
Van der Pol's equation describing the forced oscilla-

tions in an electronic circuit containing a nonlinear re-
sistor, Lane-Emden's equation dealing with the gravita-
tional equilibrium of a gaseous configuration (star) in
a stellar structure, and the nonlinearity arising from
iron cored apparatus in electrical power circuits are
some of the well-known nonlinear phenomena in di-
verse fields of study [15]. A detailed mathematical
treatment of several nonlinearities which occur in engi-
neering and physical sciences appears in the literature
cited [13]-[15].

TIME-VARYING SYSTEMS

A class of physical systems, which are described by
linear or nonlinear differential equations with time-
varying coefficients, are classified as the time-varying
systems. Time-varying coefficients denote the time-
varying nature of the parameters or component values,
the variation being caused by an agent which may be
either external or internal to the system. Aerodynami-
cal action is a familiar example of an external agent,
while the unbalance in a rotating machine is internal
to the system.
The most general form of a second-order linear dif-

ferential equation with time-varying coefficients is
Riccati's equation, written in the form

Y + f(t)ir + ag(t)r = 0. (6)

The oscillations of a simple pendulum suspended from
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Fig. 5. Computer circuit for simulating Melde's system. Potentiometer settings: Pi=c; P2=b; P3=1.0; P4=a.

Fig. 6. Computer circuit for studying the oscillations of a suspension bridge. Potentiometer settings: Pi=a; P2 = 1.0.

a vibrating support constitute a Riccati system.
Mathieu's equation characterizing a variety of peri-
odic phenomena in mechanical and electrical circuits,
Gauss's equation stating some basic results in noise
theory, and equations describing the combustion of
gases in flames are some of the time-varying systems
[15].
A computer circuit is given in Fig. 5 for solving the

following nonlinear differential equation with a peri-
odic coefficient.

r + ct + (a + br2 + cos Cot)r = 0. (7)

This equation [181 describes the oscillations in Melde's
experiment, in which one end of a horizontal thread is
fixed while the other end is attached to the prong of a
massive low-frequency tuning fork. An analogous situa-
tion is the vibratory motion of a long uniform column
subjected to a constant axial load with a superposed
sinusoidal ripple force due to an unbalance in the rotating
machinery. The vibrational characteristics of a loud-
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speaker diaphragm in relation to subharmonics are
similar, in certain respects, to those described by (7).
The oscillations of a suspension bridge due to aero-

dynamical action of wind [19] are represented by the
equation

r + {c(v) + D(r)}t + ar = 0, (8)

where c(v) denotes the aerodynamical damping which
is a function of the wind velocity. D(r) is the damping
coefficient for the mechanical structure. When the
aerodynamical damping is in phase-opposition to the
structural damping, the amplitude of self-excited oscil-
lations grows while c(v) >D(r). In fact, when the wind
velocity exceeds a certain critical value, the aero-
dynamical damping is always negative. To avoid the
catastrophic consequences, the designer must assure
that |c(v)| <D(r) at all values of the expected wind
velocity. Figure 6 enables the simulation of this phe-
nomena on an analog computer.

APPLICATIONS IN SOLVING PARTIAL DIFFERENTIAL
EQUATIONS

Partial differential equations arise in studies related
to the phenomenological laws of electromagnetic wave
propagation, acoustics, fluid dynamics, heat transfer,
plasticity, and the quantum theory of matter [1], [15],
[20], [21]. A generally successful approach to the solu-
tion of partial differential equations, using the analog
computer, involves the use of finite difference approxi-
mations. With the aid of these approximations, it is
possible to represent a many-dimensional problem as a
set of coupled ordinary differential equations through
repeated differencing. The accuracy of the solution is
improved when a smaller interval is chosen, i.e., when
more interpolation stations are used.

In order to introduce the concept of difference ap-
proximations, a function t(x, t) is considered in two
variables x and t. For the sake of continued develop-
ment, it is assumed that the range of the function ~(x, t)
may be divided into N equal intervals of width a each.
An application of the known results from numerical
analysis [22] now yields the following approximations:

at

Ox X=n-i

Ox2 x=n

dx3 x=_n_

tn -n-1

. tnJl- 2¢n + Pn-1
52

Pn+j - 3;n + 3;n-j - ;n-2
53

where to, t,, * * , n, * *,N are the values of the func-
tions ~(x, t) at points xo, XI, * * *, xn, * , XN in the x-

space.

Equation (9) permits the rewriting of a given partial
differential equation as a set of simultaneous ordinary
differential equations. One differential equation results

at each of the interpolation stations 0, 1, * P, n . . , N.
For a particular multidimensional function, the larger
the number of interpolation stations considered, the
more will be the number of ordinary differential equa-
tions in the coupled set.
To serve as an illustration, the equation describing

the electrostatic field in a charge-free region is con-
sidered in the form

024(X, t) O24(x, t)
+ =0.

ax2 at2
(10)

By virtue of the results stated in (9), this equation
may be written as

1 d24'n
- (4fl+ - 24n + 'bn-1) = - dt2

forn=O,1, * ,,***N. (lOa)

As a result, the problem at hand is transformed into one
requiring the solution for N+1 simultaneous ordinary
differential equations. A method for obtaining the solu-
tion for a set of such equations was explained in an
earlier section.
The approach described above is a completely general

one and permits itself to be readily extended to solve
problems involving multidimensional space. One of the
fields in which such problems are often met is quantum
mechanics. A most familiar example from this field is
the wave equation describing the particle in a three-
dimensional space

092 02 02 \

9X2 0y2 (Z2 y)

+f(r)xI'(x, y, z, t) = 0. (11)
Here, the problem is to find the eigenvalues and cor-
responding eigenfunctions subject to the prescribed
boundary conditions. A number of attempts to use the
analog computer for obtaining the solutions to this
problem are described in the literature [23].

GENERAL CONSIDERATIONS PERTAINING
TO COMPUTER UTILIZATION

The possibility of characterizing physical systems as
mathematical systems using the differential equations
provides the basis for the use of analog computers in
their analysis, simulation, and design. Some of the
basic principles related to such a utilization have been
treated in this paper. The computer application to the
study of a more complicated system normally involves
the division of the system into a number of subsystems
or interconnected blocks in the block-diagram notation.
It is then possible to analyze each of these blocks as

linear, nonlinear, or time-varying systems. In an actual
computer circuit, the appropriate interconnections be-
tween these blocks result in the analog for the complete
system.

During the past decade, the analog computers have
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found novel applications in the analysis of statistical
data, modeling of various business and economic cycles,
study of industrial processes and control, and in the
simulation of a variety of biological and man-machine
systems [241. Simulation of nuclear reactions, prob-
lems in astronomy and trajectory tracking and flight
control may be carried out on the analog computer.
Advantage is often taken from an additional facility,
wherein the time taken by the computer to solve the
problem may be varied in direct relation to the actual
time required for the phenomena to occur. This is called
time scaling [1]- [4]. Thus astronomical changes, which
in reality take several years, may be speeded up on the
computer so that final results are observed within a
few minutes or seconds. On the other hand, nuclear
processes may be slowed down so as to enable the
monitoring of the intermediate stages.
The treatment so far concerned the capabilities of

the analog computer as a research tool. This should not,
however, convey the impression that there are few
limitations to this application. There are, in fact, a
number of well-known limitations associated with this
class of computer [1], [2], [20] and some of these will
be listed in the following. The most important of the
limitations orginates from the fact that the type of
problems which are best suited for analog computer ap-
plications are the ones involving only a time-like vari-
able as the independent variable. While the finite
difference approximations permit the extension of the
scope of applications, this is not without involving the
use of relatively more equipment or proportionately
more time to yield a solution. For this reason, computer
application for multidimensional problem analysis has
not advanced beyond the stages of academic interest.
Secondly, the problem setting on an analog computer
involves magnitude scaling-the process through which
a linear relationship is established between the voltage
at any reference node and the variable represented by it.
This requires an advance knowledge of the maximum
expected values for various variables in the problem.
While it is possible to estimate the pessimistic maxima
in a large number of cases, the situation in which these
could not be easily evaluated may not altogether be
ruled out in more complicated problems. Problem setting
in such situations involves a trial and error approach.
There are, on the other hand, occasions where this type
of adaptability of the analog computer to a trial and
error approach in problem solving becomes advanta-
geous in rendering the computer useful in the design of
a class of systems. Finally, there is an apparent limit to
the accuracy with which the computer can furnish a
solution, and most present-day analog computers are
useful when errors of the order of one to two percent are
allowable. This error is partly attributable to the ac-
curacy with which the continuous variable constituting
the data can be sensed and displayed. Besides, the
analog circuits are liable to drift, drift being inherent in
most electronic circuits. The drift during the solution

of a single relatively simple equation may be negligible.
But it is certainly undesirable in simulations lasting over
an extended period.
Some of the above limitations are factual and are to

be accepted, while others are more likely to be overcome
with the developments in circuitry using improved
techniques. Current effort is directed towards develop-
ing high-speed machines using faster operating and
more stable electronic circuits. There is room for fur-
ther improvement in terms of the attainable accu'racy.
Interest is also being shown in the simulation of complex
systems using a "hybrid computer," which combines the
speed and versatility of the electronic analog computer
and the accuracy of the digital compter. These are to
mention but only a few trends in current developmental
and research activity concerned with this class of com-
puters. In conclusion, it is appropriate to expect that,
in spite of the various general limitations, the analog
computer will continue to be considered an increasingly
important tool in analysis.
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