
Switched Capacitor Band-Pass Filter

0.1 Object

The object of this experiment is to design and implement a fourth-order Chebyshev band-pass
filter using a switched-capacitor realization. The specifications of the filter are: passband
ripple 1.8 dB, center frequency fC = 4kHz, −3 dB bandwidth f3 dB = 2kHz, gain at the
center frequency HBP = 1. The transfer function is to be realized as the product of a
second-order high-pass filter in cascade with a second-order low-pass filter.
To obtain the transfer function for the filter, see page 13 of the Filter Potpourri. Follow

the example for the 8th order band-pass filter to solve for the required value of x and B in the
frequency transformation from a low-pass filter function to a band-pass filter function. The
frequency transformation for the band-pass filter is given on page 6 of the Filter Potpourri.
Use it to solve for the transfer function.
After you obtain the band-pass transfer function, use Mathcad or any math program to

plot the dB gain versus frequency for the function. If you use Mathcad, be sure to use a range
variable for the frequency that gives equal x-axis spacings on a log scale. Check to see if the
center frequency and the −3 dB bandwidth are correct. If they are correct, use Mathcad to
factor the denominator of the transfer function into the product of two second-order transfer
functions.
Rewrite the factored transfer function as the product of a high-pass filter function and

a low-pass filter function. Realize the two filter functions using the methods and hardware
described below. The parts will be supplied by our laboratory support staff. The information
below is from the lab manual for ECE 3042. It describes the devices available and how to
use them. Other that that, it contains more information than is needed for this experiment.

0.2 Switched Capacitor Theory

Active filter design with op amps is a robust mature discipline. All of the classical filter types
that were implemented in bygone eras with resistors, capacitors, and inductors may now be
implemented solely with resistors, capacitors, and op amps. The accuracy of these filters is
limited by only the precision of the components and the properties of the physical op amps
employed. If discrete resistors and capacitors are used, variations within the manufacturer’s
stated tolerance may produce unacceptable error in the design unless extremely expensive
components are employed.
The resistors and capacitors required for filter design may be fabricated on monolithic

integrated circuits along with the op amps but they usually require a large amount of area and
are subject to temperature drift and other annoying effects such as parasitic capacitance.
Resistors fabricated on integrated circuits are usually restricted to values less than 10 kΩ
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while the upper limit for capacitors is approximately 100 pF. Also, it is quite difficult to
obtain precise values of passive components fabricated on integrated circuits. Such dedicated
analog filter integrated circuits are available but they are rather expensive.
The problem of component variation may be overcome with switched capacitor filters.

These use small integrated circuit capacitors whose terminals are switched by a high fre-
quency clock signal using MOSFET switches to simulate large values of resistance. The
MOSFETs are fabricated on the same integrated circuit while the clock may be external or
also resident on the integrated circuit.
Switched capacitor filters are not a panacea. They are digital circuits and are, therefore,

subject to aliasing. The Nyquist criterion requires that the waveform be sampled at a rate
at least twice its bandwidth to prevent aliasing. Normally the clock frequency is picked to
be large compared to the critical frequencies of the filter (50 to 100 times larger) to prevent
aliasing. Also, the output is a discrete rather than continuous waveform. To minimize both
of these defects it is customary to precede the digital switched capacitor filter with an anti-
aliasing analog low-pass filter to limit the bandwidth and to follow the digital filter with an
analog deglitching filter. The break frequencies of these analog filters are not crucial so this
use of analog filters at the input and output is not a major impediment.

0.2.1 Switched Capacitor Integrator

Figure 0-1 Switched capacitor integrator.

A switched capacitor integrator is shown in Fig. 0-1. The clock signal c(t) with frequency
fc and period Tc = 1/fc is applied to both the gate input of MOSFET M1 and the digital
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INVERTER. The signal applied to the gate of MOSFETM2 is the complement of the clock.
Hence, excepts for the switching transient, one MOSFET is on while the other is off.
When the clock is high MOSFET M1 is on and M2 is off. Capacitor C1 has a charge

∆q = C1vi placed on it by the input to the filter. If the clock frequency is large compared to
the bandwidth of vi the input may be considered to be constant during the sampling interval
Tc/2. During the next clock half cycle M1 is off and M2 is on which places the top node of
the capacitor C1 at the virtual ground of the op amp which causes the charge on it to be
transferred to CF . The average current flowing into capacitor C1 is

i(t) =
∆q

Tc
=

C1
Tc

vi = C1fcvi (1)

which means that it is equivalent to a resistor Req = 1/C1fc. The output of the op amp is
then given by

vo = − 1

CF

Z t

−∞
i(u) du = −C1fc

CF

Z t

−∞
vi(u) du = − 1

CFReq

Z t

−∞
vi(u) du (2)

which makes this circuit an integrator. Integrators are the heart of the state variable filter
which means that any of the classical filters may be realized with this switched capacitor
arrangement. Other more elaborate topologies are also employed in switched capacitor filters
but the circuit in Fig. 0-1 illustrates the basic principle.
Because charge is transferred in spurts from capacitor C1 to capacitor CF this makes

the output voltage discrete rather than continuous. The voltage increments are reduced to
acceptable values by picking the clock frequency to be large which is also required to prevent
aliasing. A deglitching analog low-pass filter cascaded with the output may also be used to
smooth the output voltage.
Since the output of the switched capacitor integrator depends on the ratio of two capac-

itances, this can easily be fabricated on an integrated circuit. Although precise values of
components are difficult to control, maintaining ratios is relatively simple.
Anent the equivalent resistance being set as Req = 1/C1fc, this makes controlling the

critical frequencies of the filter elementary. The system clock sets the critical frequencies.
Therefore, such filters may be easily electronically tuned.
When a MOSFET is on the drain to source resistance is not zero but has a certain value

know as the on-resistance Ron which is normally several hundred ohms. This means that
the charging and discharging of capacitor C1 is not instantaneous but limited by an RC
time constant τ on = RonC1. This sets the upper limit for the system clock. Proper operation
requires that the period of the system clock be large compared to the charging time constant.
With current MOS technology this makes operation of switched capacitor filters above a few
hundred kilo-hertz impossible.

0.2.2 Second Order Filter Categories

Because switched capacitor filters are digital circuits, the appropriate mathematical artifice
to analyze them is the z transform. However, classical frequency domain analysis is suffi-
ciently accurate and more amendable to a mathematical tractable analysis. This discussion
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will be limited to second order filters because that is what is implemented in the device that
will be ultimately employed in this experiment.

Low-Pass Filter

Figure 0-2 Second-order low-pass filter.

The complex transfer function for a second-order low-pass filter is

T (s) = K
1µ

s

ω0

¶2
+
1

Q

µ
s

ω0

¶
+ 1

(3)

where K is the DC gain of the filter, Q is the quality factor, and ω0 is the resonant frequency
of the filter. The magnitude of the complex transfer function is plotted in Fig. 0-2. The
−3 dB or half-power cutoff frequency fc is the frequency at which the gain is reduced to
K/
√
2 and is given by

fc = f0

vuutµ
1− 1

2Q2

¶
+

sµ
1− 1

2Q2

¶2
+ 1 (4)

which is a frequency larger than f0. The maximum value of the magnitude of the complex
transfer function A occurs at the frequency fmax where

A =
K

1

Q

r
1− 1

4Q2

(5)
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and

fmax = f0

r
1− 1

2Q2
(6)

which is a frequency smaller than f0.
The proper selection of Q will produce any of the classical filter configurations such as

Butterworth, Chebyshev, and Bessel. The choice of Q is given in Table 1.

Filter Type Pass-Band Ripple Q fc/f0
Bessel – 0.577 0.786
Butterworth – 0.707 1.000
Chebyshev 0.1 dB 0.767 1.078
Chebyshev 0.2 dB 0.797 1.111
Chebyshev 0.3 dB 0.821 1.136
Chebyshev 0.5 dB 0.864 1.176
Chebyshev 1 dB 0.957 1.246
Chebyshev 2 dB 1.129 1.333
Chebyshev 3 dB 1.305 1.389

Table 1 Second-Order Low-Pass Filter Parameters

High-Pass Filter

Figure 0-3 Second-order high-pass filter.
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The complex transfer function for a second-order high-pass filter is

T (s) = K

µ
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ω0

¶2
µ
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ω0

¶
+ 1

(7)

whereK is the high-frequency gain of the filter, Q is the quality factor, and ω0 is the resonant
frequency of the filter. The magnitude of the complex transfer function is plotted in Fig.
0-3. The minus 3 dB, half-power, critical, or cutoff frequency fc is the frequency at which
the gain is reduced to K/

√
2 and is given by

fc =
f0vuutµ1− 1

2Q2

¶
+

sµ
1− 1

2Q2

¶2
+ 1

(8)

which is a frequency smaller than f0. The maximum value of the magnitude of the complex
transfer function A occurs at the frequency fmax where

A =
K

1

Q

r
1− 1

4Q2

(9)

and

fmax =
f0r

1− 1

2Q2

(10)

which is a frequency larger than f0.

Band-Pass Filter

The complex transfer function for the second-order band-pass filter is

T (s) = K

1
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(11)

where f0 is the resonant frequency and also the center frequency, Q is the quality factor, and
K is the gain at the center frequency. The plot of the magnitude of the complex transfer
function as a function of frequency is shown in Fig. 0-4. This circuit has both an upper, fU ,
and lower, fL, half-power frequencies given by

fU = f0

 1

2Q
+

sµ
1

2Q

¶2
+ 1

 (12)
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Figure 0-4 Band-pass filter.
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and

fL = f0

− 1

2Q
+

sµ
1

2Q

¶2
+ 1

 (13)

The difference between these two half-power frequencies is known as the half-power band-
width, ∆f , which is given by

∆f = fU − fL =
f0
Q

(14)

which reveals that

Q =
f0
∆f

(15)

which is the reason why Q is called the quality factor, i.e. the larger Q is the sharper the
peak in the filter becomes. The center frequency is also the geometric mean of the half-power
frequencies, i.e.

f0 =
p
fUfL (16)

Notch Filter

The complex transfer function of the second order notch filter is given by

T (s) = K

µ
s

ω0

¶2
+ 1µ

s

ω0

¶2
+
1

Q

µ
s

ω0

¶
+ 1

(17)

where ω0 is the notch frequency in radians/sec, Q is the quality factor, and K is both the
high and low frequency gain. A plot of the magnitude of the complex transfer function for
the notch filter is shown in Fig. 0-5.
All of the equations for the upper and lower half-power frequencies as well as the quality

factor for the band-pass filter are equally applicable for the notch filter. This is because the
transfer function of the notch filter, TN(s), is related to that of the band-pass filter, TB(s),
by

TN(s) = K − TB(s) (18)

Thus, either filter may be obtained by summing the other with a gain constant.

All-Pass Filter

The transfer function of the second-order all-pass filter is given by
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Figure 0-5 Notch filter.
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T (s) = K
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which has a constant amplitude and a phase that varies with frequency. The magnitude
of the complex transfer function is K at all frequencies whereas the angle of the complex
transfer function is given by

φ(jω) = 6 T (s)|s=jω = −2 arctan


1

Q

ω

ω0
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µ
ω
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 (20)

Biquadratic Filter

The second order biquadratic filter has the complex transfer function

T (s) = K
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(21)

which has a DC gain of K and a high frequency gain of K (ωp/ωz)
2 . A special case of the

biquadratic filter is obtained by letting the quality factor for the numerator become infinite
(which puts the zeroes on the imaginary axis as is the case for the notch filter)–these are
known as elliptic filters. If ωp > ωz it is a high-pass elliptic filter and if ωp < ωz it is a
low-pass elliptic filter (and, of course, if ωp = ωz it is a notch filter). Elliptic filters feature
the fastest transition from the pass to the stop band but, unlike the garden variety high-
and low-pass filters, do not have a gain that is a monotonic function of frequency.

0.3 Devices

A plethora of switched capacitor devices are available as off-the-shelf integrated circuits from
a variety of manufacturers. Prominent among these are the devices from Motorola which
are primarily intended for telecommunications applications such as the MC145432 which
features a six pole notch filter operated by a highly stable crystal oscillator internal clock
or the MC145414 which is a fifth-order elliptic filter. Some filters are totally digital in that
both the clock frequency and the filter parameters are directly set by input digital codes.
The device that will be employed in this experiment in the MF10 Universal Monolithic

Dual Switched Capacitor Filter because it is the cheapest switched capacitor device available
and it offers a degree of flexibility to the user. A functional block diagram is shown in Fig.
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Figure 0-6 MF10 switched capacitor filter.
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0-6. The square symbols indicate that these are pin numbers on the integrated circuit. It
has two identical filters known and A and B. Separate clocks are provided for each of the
two filters. The circuit components shown in this figure are internal to the integrated circuit.
Each of the symbols show as a triangle with an integral symbol inside are switched capacitor
integrators of the type discussed in 0.2.1. Because there are two integrators and op amp
summers, this makes this a second order state variable filter.
The symbol with a one plus and two minus signs in a circle with an X is a summer with

two inverting and one non-inverting inputs. One of the inverting inputs is a pin on the IC
while the other is controlled by the SAB input on pin 6; the position of this switch determines
whether the feedback is closed around the input op amp or the triple input summer.
The level shift input on pin 9 determines the type of clock being used. This pin is

grounded for TTL clock signals or ± 5V CMOS clock signals. The same type of clock must
be applied to both filter A and B but different frequency clocks may be used at the two
inputs. The 50/100/CL input on pin 12 determines whether the critical frequencies are
obtained as the clock frequency divided by 50 or 100 or whether the filter is turned off; if
this pin is connected to the positive power supply the clock frequency is divided by 50, if
it is grounded the clock frequency is divided by 100, and if it is connected to the negative
supply filtration is inhibited.

Figure 0-7 Pinouts for MF10

The pinouts for the MF10 are given in Fig. 0-7. A more complete description of this
device is given in the manufacturer’s data sheet in the appendix to this experiment. The
notation used in the manufacturer’s data sheet differs slightly from that used in this exper-
iment.
The manufacturer defines several modes or circuit topologies for the MF10. The one that
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Figure 0-8 Mode 3A for MF10
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will be used in this experiment is Mode 3a shown in Fig. 0-8. The resistors R1, R2, R3, and
R4 are external resistors that are connected to the pins shown. There are three outputs low-,
high-, and band-pass at pins 1, 3, and 2 respectively. One external op amp summer with
resistors RL, RU ,and Rg is used to sum the high- and low-pass outputs to produce a notch
output. The input is vi.
The resonant frequency f0 is given by

f0 =
fCLK
100

×
r

R2

R4
or

fCLK
50

×
r

R2

R4
(22)

depending on whether the clock is being divided by 100 or 50; this is center frequency of
both the band-pass and notch filter. The quality factor is given by

Q =

r
R2

R4
× R3

R2
(23)

The DC gain of the low-pass filter is

KLP = −R4
R1

(24)

The high-frequency gain of the high-pass filter is

KHP = −R2
R1

(25)

The gain at the center frequency of the band-pass filter is

KBP = −R3
R1

(26)

The gain of the notch filter at the notch frequency f0 is given by

An =

¯̄̄̄
Q

µ
Rg

RL
KLP − Rg

RH
KHP

¶¯̄̄̄
(27)

which would normally be picked to be zero. The gain of the notch filter at DC is

KN =
Rg

RL
×KLP (28)

while the gain at the frequency which is half of the clock frequency is

KCLK
2
= − Rg

RH
×KHP (29)
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0.4 Experimental Procedures

0.4.1 Preparation

Prepare the electronic breadboard to provide buses for the positive and negative power supply
rails and the circuit ground. Three power supplies will be used in this experiment: +5V, and
−5V. Each power supply rail should be decoupled with a 100Ω, 25V (or greater) capacitor.
The resistors are connected in series with the external power supply leads and the capacitors
are connected from the power supply rails to ground on the circuit side of the resistor. The
capacitor must be installed with the proper polarity to prevent reverse polarity breakdown.

0.4.2 Clock

Figure 0-9 555/MC1555 Timer
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The clock that will be used for the experiment in the MC1555/555 timer shown in Fig.
0-9. The power supply voltage for this IC will be + 5V so that it will produce a TTL clock.
The clock frequency is

fCLK =
1.44

(R1 + 2R2)CT
(30)

and the duty cycle is

Duty Cycle =
R1 +R2
R1 + 2R2

(31)

Design the timer so that the clock frequency is either f0 × 100 or f0 × 50. Pick the duty
cycle to be close to 50%. The lower of the two frequencies is the most judicious choice;
although the higher clock frequency would produces fewer glitches in the output of the filter,
if the timer were operated at this high frequency on an untidy breadboard, the waveform
might be distorted and degrade the performance of the filter.

0.4.3 Second-Order Filter

Assemble the second-order state variable filter shown in Fig. 0-8 using the component values
computed in the preliminary calculations section with the power off. This is the mode of the
filter labeled 3a by the manufacturer.
Pins 5, 9, and 15 should be connected to ground.
Pins 7, 8, and 12 should be connected to the positive power supply, +5V. (Connecting

pin 12 to the positive power supply sets the filter to the fCLK/50 mode. If the fCLK/100
mode is desired, pin 12 should be grounded.)
Pins 6, 13, and 14 should be connected to the negative power supply, −5V.
Standard connections should be made for the external op amp. An LF351 would be a

better choice than a 741 since the 741 requires power supply voltages of at least ±8V which
would incinerate the MF10.
The clock input is pin 3 of the MC1555 timer which is connected to pin 10 of the MF10

for filter A.
Turn the power on and measure the frequency response of the filter. Data should be

taken of the four outputs as the frequency of the input is varied one decade above and below
f0.
Increase the frequency of the input until it is approximately equal to the clock frequency.

Explain why the low- and band-pass outputs are nonzero in the laboratory report.

0.4.4 Fourth-Order Filter

Assemble the fourth-order filter with the characteristics specified by the laboratory instruc-
tor. This is obtained by cascading the two second-order filters found in the MF10. Repeat
the measurement of the frequency response.
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