A Fourth Order Chebychev High-Pass Filter

The object of this design project is to design, assemble, and evaluate a 4th order Chebychev high-pass filter. The specifications are:

dB ripple:	$1.25\mathrm{dB}$
gain constant:	$H_0 = 1.0$
$-3 \mathrm{dB}$ cutoff frequency:	$f_3 = 5 \mathrm{kHz}$

The filter is to be realized with one second-order KRC filter and one second-order statevariable or Tow-Thomas type filter. Preferably, the resistor values should be in the $1 \text{ k}\Omega$ to $100 \text{ k}\Omega$ range.

A basic reference for the design is the filter potpourri located at:

http://users.ece.gatech.edu/~mleach/ece4435/filtrpot.pdf

There is an example on pages 14 and 15 that you can follow to determine the transfer function. Page 12 shows how to determine the cutoff frequency f_c from the -3 dB frequency f_3 . The second-order KRC filter is covered on page 23. The textbook covers state-variable type circuits that may be used. All you have to do is to determine the resonance frequency and quality factor of each second-order filter section, select suitable component values for each section, assemble the filter, and test it. As part of the report, you should include theoretical plots similar to Fig. 8 in the filter potpourri and a standard Bode plot on log-log scales. These can easily be done with Mathcad or any other math software.

It is suggested that you test each second-order section by itself before testing the overall filter. Check the resonance frequency by determining the frequency at which the phase shift between the input an output voltages is 90°. The quality factor is the relative gain at the resonance frequency. Each section must have the correct resonance frequency and quality factor for the overall filter to be correct.