ECE 6416 Assignment 5

1. The figure shows a CMOS amplifier consisting of a p-channel input transistor M_{1} and an n-channel load transistor M_{2} biased by a fixed gate voltage V_{B}.

(a) Show that the small-signal voltage gain is given by

$$
\frac{v_{o}}{v_{i}}=-g_{m 1}\left(r_{d s 1} \| r_{d s 2}\right)
$$

(b) Show that the small-signal short-circuit output current is given by

$$
i_{o(s c)}=-g_{m 1}\left(v_{i}+v_{n 1}\right)-g_{m 2} v_{n 2}
$$

(c) If only flicker noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$
v_{n i}^{2}=\frac{K_{f 1} \Delta f}{2 \mu_{p} L_{1} W_{1} C_{o x}^{2} f}\left[1+\frac{K_{f 2}}{K_{f 1}}\left(\frac{L_{1}}{L_{2}}\right)^{2}\right]
$$

How should the W and L for each device be chosen to minimize the noise? (L_{2} and W_{1} should be large and L_{1} and W_{2} should be small)
2. The following MOSFET data are given

	n-Channel $\left(M_{2}\right)$	p-Channel $\left(M_{1}\right)$
$\frac{\mu_{0} C_{o x}}{2}$	$7 \mu \mathrm{~A} / \mathrm{V}^{2}$	$3 \mu \mathrm{~A} / \mathrm{V}^{2}$
$\frac{K_{f}}{2 \mu_{0} C_{o x}^{2}} \int_{20}^{20 k} \frac{d f}{f}$	$380 \times 10^{3}(\mu \mathrm{~V} \times \mu \mathrm{m})^{2}$	$48 \times 10^{3}(\mu \mathrm{~V} \times \mu \mathrm{m})^{2}$

If the value of $C_{o x}$ is the same for both MOSFETs in the circuit of Problem 1, calculate $v_{n i}$ for the following values of W and L :

	W_{1}	L_{1}	W_{2}	L_{2}
Case 1	$1000 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$	$400 \mu \mathrm{~m}$	$4 \mu \mathrm{~m}$
Case 2	$1000 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$	$200 \mu \mathrm{~m}$	$8 \mu \mathrm{~m}$
Case 3	$500 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$	$400 \mu \mathrm{~m}$	$4 \mu \mathrm{~m}$

$(16.9 \mu \mathrm{~V}, 8.88 \mu \mathrm{~V}$, and $33.4 \mu \mathrm{~V})$
3. The figure shows an n-channel NMOS enhancement-mode common-source amplifier with an active n-channel NMOS enhancement-mode load. The two transistors are biased at the same drain current I_{D} and have the same value for $C_{o x}$.

(a) Show that the small-signal short-circuit output current is given by

$$
i_{o(s c)}=-g_{m 1}\left(v_{i}+v_{n 1}\right)+g_{m 2} v_{n 2}
$$

(b) Show that the small-signal output resistance is given by

$$
r_{o u t}=r_{d s 1}\left\|r_{d s 2}\right\|\left(\frac{1}{g_{m 2}\left(1+\chi_{2}\right)}\right)
$$

(c) Show that the open-circuit output voltage is given by

$$
v_{o(o c)}=\left(-g_{m 1}\left(v_{i}+v_{n 1}\right)+g_{m 2} v_{n 2}\right) \times r_{d s 1}\left\|r_{d s 2}\right\|\left(\frac{1}{g_{m 2}\left(1+\chi_{2}\right)}\right)
$$

(d) If only flicker noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$
v_{n i}^{2}=\frac{K_{f 1} \Delta f}{2 \mu_{n} C_{o x}^{2} L_{1} W_{1} f}\left[1+\left(\frac{L_{1}}{L_{2}}\right)^{2}\right]
$$

It is obvious that W_{1} should be large to minimize the noise. What should L_{1} be to minimize the noise? $\left(L_{1}=L_{2}\right)$
(e) If only thermal noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$
v_{n i}^{2}=\frac{4 k T \Delta f}{3 \sqrt{K_{1} I_{D}}}\left[1+\sqrt{\frac{L_{1} W_{2}}{L_{2} W_{1}}}\right]
$$

How should the W and L for each device be chosen to minimize the noise? (L_{2} and W_{1} should be large and L_{1} and W_{2} should be small)
4. Repeat problem 2 for part (d) of problem 3. $(14.0 \mu \mathrm{~V}, 10.3 \mu \mathrm{~V}$, and $23.5 \mu \mathrm{~V})$

