
ECE 6416 Practice Problems 1

1. The probability density function for a zero-mean random noise voltage is

p (v) =
1√
2πσ

exp

µ
− v2

2σ2

¶
where σ is the standard deviation which corresponds to the rms value of the voltage.
What is the probability density function for the voltage if a dc offset voltage VDC is
added to the noise?

2. This problem illustrates how the mean-square value of the sum of two functions is cal-
culated. The time functions are periodic sinusoids. Some useful trigonometric relations
are

cosx cos y =
1

2
[cos (x− y) + cos (x+ y)]

hcosωti = 0 
cos2 ωt

®
=
1

2

hcosω1t cosω2ti = 0 for ω1 6= ω2

(a) For va (t) = VA cosωt and vb (t) = VB cos (ωt+ ϕ), show that the mean-square
sum is given by 

[va (t) + vb (t)]
2® = 1

2

¡
V 2
A + 2VAVB cosϕ+ V 2

B

¢
and the correlation coefficient is given by

ρ = cosϕ

(b) What do the answers reduce to for ϕ = 0, ϕ = ±180 ◦, and ϕ = ±90 ◦? From the
answers to this question, you should be able to conclude that two sinusoids of the
same frequency are statistically independent if they differ in phase by 90 ◦.

3. For va (t) = VA cosω1t and vb (t) = VB cos (ω2t+ ϕ), where ω1 6= ω2, show that
[va (t) + vb (t)]

2® = 1

2
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¢
and ρ = 0

From this answer, you should be able to conclude that two sinusoids of differing fre-
quencies are statistically independent regardless of the phase angle between the two.

4. For a complex impedance Z = R+ jX, show that

|Z|2 = Z × Z∗ = R2 +X2

1

Z
=

R− jX

|Z|2 Re

µ
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¶
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= − X
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5. An lossy inductor L has a series winding resistance R. The inductor can be modeled
as an ideal inductor in series with a discrete resistor.
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(a) Draw the circuit with a thermal phasor noise voltage Vt in series with the resistor.
Calculate the short-circuit noise current In = Vt/Z, where Z is the complex
impedance of the series circuit. Show that the mean-square short-circuit noise
current is given by

i2n = InI∗n =
4kT∆f

R

1

1 + (2πfL/R)2

(b) Show that the answer above can be obtained from the expression

i2n = 4kT Re (Y )∆f

where Y is the complex admittance of the circuit. Note, this result can be thought
of as the dual of the formula v2n = 4kT Re (Z)∆f that was used in class to
calculate the mean-square open-circuit voltage of a parallel RC network.

(c) Integrate the mean-square noise current to show that the total mean-square ther-
mal noise current generated by the inductor, i.e. the noise in the band 0 ≤ f ≤ ∞,
is given by

i2total =
kT

L

Hint: Let x = 2πfL/R and df = (R/2πL) dx. The integral which must be
evaluated can be put into the form

R∞
0

dx/ (1 + x2) = [tan−1 x]∞0 = π/2.

6. A lossy inductor having an air core can be modeled as and ideal inductor L in series
with a resistor R, where R is the winding resistance. Let a capacitor C be connected
in parallel with the lossy inductor.

(a) With s = jω, where ω = 2πf , solve for the complex impedance of the network.
Use the general Nyquist equation v2n = 4kT Re (Z)∆f to show that the mean-
square thermal noise voltage across the circuit in the frequency band ∆f is given
by

v2n =
4kTR∆f

(1− ω2LC)2 + (ωRC)2

(b) Replace the resistor with its Thévenin noise model. Use voltage division to show
that the phasor noise voltage Vn across the circuit is given by

Vn =
Vt

1− ω2LC + jωRC

where Vt is the thermal noise voltage generated by the resistor. Show that v2n =
VnV ∗n gives the same answer as the one obtained above.

7. A resistor R and an ideal capacitor C are connected in parallel. The two are in thermal
equilibrium. This means that the thermal noise power generated by the resistor that
is absorbed by the capacitor must equal the thermal noise power generated by the
capacitor that is absorbed by the resistor. Otherwise, one would be heating up while
the other is cooling off and the two would not be in thermal equilibrium.
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(a) Use the Thévenin noise model of the resistor and denote its thermal phasor noise
voltage by Vt, where v2t = VtV ∗t = 4kTR∆f is the mean-square noise voltage in
the band∆f at the frequency of analysis. Show that the phasor spot noise voltage
Vn across the capacitor and phasor spot noise current In through the capacitor
are given by

Vn = Vt
1

1 + jωRC
In = Vt

jωC

1 + jωRC

(b) The power absorbed by the capacitor is given by PC = Re
¡
VnI∗n

¢
. Show that

this is zero. (Note, we are using the convention that the magnitude of a noise
phasor is the rms value, not the peak value, so that there is no factor of 1/2 in
the expression for PC.)

(c) Because PC = 0, it follows that the capacitor cannot absorb power from the
resistor. How does this imply that the capacitor cannot generate noise power?

(d) Repeat the problem for an ideal inductor L in parallel with a resistor R. Show
that Vn and In are given by

Vn =
Vt
R

jωL

1 + jωL/R
In =

Vt
R

1

1 + jωL/R

8. A resistorR and a capacitor C are connected in parallel to form a two-terminal network.
Use the Norton noise model of the resistor to show that the phasor short-circuit noise
current In(sc) and the phasor open-circuit noise voltage Vn(oc) are given by

In(sc) = It Vn(oc) =
ItR

1 + jωRC

Show that the mean-square spot noise values are given by

i2n(sc) =
4kT

R
v2n(oc) =

4kTR

1 + (ωRC)2

the complex correlation coefficient between Vn(oc) and In(sc) is given by

γ =

q
1 + (ωRC)2

1 + jωRC
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