
ECE 6416 Assignment 5

- 1. A BJT common-emitter amplifier with $R_E=0$ is biased at $I_C=0.5\,\mathrm{mA}$. The BJT has a base spreading resistance $r_x=50\,\Omega$ and a current gain $\beta=150$. A JFET common-source amplifier with $R_S=0$ is biased at $I_D=0.5\,\mathrm{mA}$. The JFET has a threshold voltage $V_{TO}=-2.5\,\mathrm{V}$ and a drain–to-source saturation current $I_{DSS}=3\,\mathrm{mA}$. Flicker noise can be neglected.
 - (a) Solve for the signal source resistance R_s at which the two transistors have the same noise equivalent input voltage v_{ni} . [2905 Ω]
 - (b) On the same axes, plot v_{ni} in V/\sqrt{Hz} versus R_s for a source resistance in the range 100 Hz to 100 kHz. Use log-log scales with a vertical range from 10^{-9} V to 10^{-7} V.
 - (c) On the same axes, plot the noise figure NF versus R_s for the same range of R_s . Use dB-log scales with a vertical range from 0 dB to 10 dB. Is the value of R_s at which the noise figures are equal the same as the value of R_s at which the equivalent noise input voltages are equal?
- 2. The figure shows a CMOS amplifier consisting of a p-channel input transistor M_1 and an n-channel load transistor M_2 biased by a fixed gate voltage V_B .

(a) Show that the small-signal voltage gain is given by

$$\frac{v_o}{v_i} = -g_{m1} \left(r_{ds1} || r_{ds2} \right)$$

(b) Show that the small-signal short-circuit output current is given by

$$i_{o(sc)} = -g_{m1} (v_i + v_{n1}) - g_{m2} v_{n2}$$

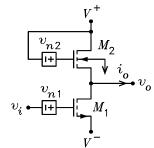
(c) If only flicker noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$v_{ni}^{2} = \frac{K_{f1}\Delta f}{2\mu_{p}L_{1}W_{1}C_{ox}^{2}f} \left[1 + \frac{K_{f2}}{K_{f1}} \left(\frac{L_{1}}{L_{2}} \right)^{2} \right]$$

How should the W and L for each device be chosen to minimize the noise? (Choose $L_2 = L_1 \sqrt{K_{f2}/K_{f1}}$ and make L_1 and W_1 large.)

1

3. The following MOSFET data are given


	n-Channel (M_2)	p-Channel (M_1)	
$\frac{\mu_0 C_{ox}}{2}$	$7\mu\mathrm{A}/\mathrm{V}^2$	$3\mu\mathrm{A}/\mathrm{V}^2$	
$\frac{K_f}{2\mu_0 C_{ox}^2} \int_{20}^{20k} \frac{df}{f}$	$380 \times 10^3 \left(\mu\text{V} \times \mu\text{m}\right)^2$	$48 \times 10^3 \left(\mu\text{V} \times \mu\text{m}\right)^2$	

If the value of C_{ox} is the same for both MOSFETs in the circuit of Problem 2, calculate v_{ni} for the following values of W and L:

	W_1	L_1	W_2	L_2
Case 1	$1000\mu\mathrm{m}$	$5\mu\mathrm{m}$	$400\mu\mathrm{m}$	$4\mu\mathrm{m}$
Case 2	$1000\mu\mathrm{m}$	$5\mu\mathrm{m}$	$200\mu\mathrm{m}$	$8\mu\mathrm{m}$
Case 3	$500\mu\mathrm{m}$	$10\mu\mathrm{m}$	$400\mu\mathrm{m}$	$4\mu\mathrm{m}$

 $(16.9 \,\mu\text{V}, 8.88 \,\mu\text{V}, \text{ and } 33.4 \,\mu\text{V})$

4. The figure shows an n-channel NMOS enhancement-mode common-source amplifier with an active n-channel NMOS enhancement-mode load. The two transistors are biased at the same drain current I_D and have the same value for C_{ox} .

(a) Show that the small-signal short-circuit output current is given by

$$i_{o(sc)} = -g_{m1} (v_i + v_{n1}) + g_{m2} v_{n2}$$

(b) Show that the small-signal output resistance is given by

$$r_{out} = r_{ds1} ||r_{ds2}|| \left(\frac{1}{g_{m2}(1+\chi_2)}\right)$$

(c) Show that the open-circuit output voltage is given by

$$v_{o(oc)} = \left(-g_{m1}\left(v_i + v_{n1}\right) + g_{m2}v_{n2}\right) \times r_{ds1} \|r_{ds2}\| \left(\frac{1}{g_{m2}\left(1 + \chi_2\right)}\right)$$

2

(d) If only flicker noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$v_{ni}^{2} = \frac{K_{f1}\Delta f}{2\mu_{n}C_{ox}^{2}L_{1}W_{1}f} \left[1 + \left(\frac{L_{1}}{L_{2}}\right)^{2} \right]$$

It is obvious that W_1 should be large to minimize the noise. What should L_1 be to minimize the noise? $(L_1 = L_2)$

(e) If only thermal noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$v_{ni}^2 = \frac{4kT\Delta f}{3\sqrt{K_1 I_D}} \left[1 + \sqrt{\frac{L_1 W_2}{L_2 W_1}} \right]$$

How should the W and L for each device be chosen to minimize the noise? (L_2 and W_1 should be large and L_1 and W_2 should be small)

- 5. Repeat problem 3 for part (d) of problem 4. $(14.0 \,\mu\text{V}, 10.3 \,\mu\text{V}, \text{ and } 23.5 \,\mu\text{V})$
- 6. A common-source MOSFET amplifier is driven by a source with an output resistance $R_s = 50 \,\Omega$. The MOSFET has the parameters $g_m = 2 \,\mathrm{mS}$ and $c_{gs} = 1.5 \,\mathrm{pF}$. The frequency is $f = 900 \,\mathrm{MHz}$. It can be assumed that c_{gd} has been "tuned out" by the addition of a suitable matching network in parallel with the input.
 - (a) Calculate the value of an inductor L_s in series with the source which will give a resistance looking into c_{qs} from the gate of 50Ω . [0.0375 μ H]
 - (b) Calculate the noise figure NF of the circuit. [8.10 dB]
 - (c) If the value of L_s is chosen to make the gate input impedance real, i.e. to cancel c_{gs} , and g_m is varied to obtain an impedance match with the source, calculate the new values of L_s , g_m , and NF. [0.0209 μ H, 3.60 mS, 2.22 dB]