ECE 6416 Quiz 1

October 7, 2009

Professor Leach
Name
Instructions. Print your name in the space above and at the top of all other pages in your quiz. Place a box around each answer. Express each numerical answer as a decimal number. Numerical values are $4 k T_{0}=1.6 \times 10^{-20} \mathrm{~J}$ and $q=1.6 \times 10^{-19} \mathrm{C}$. Honor Code: I have neither given nor received help on this quiz. Initials \qquad

1. A $10 \mathrm{k} \Omega$ resistor has a noise index of -15 dB . The dc current flowing through the resistor is $I_{D C}=1 \mathrm{~mA}$. The frequency band of interest is the band from 20 Hz to 20 kHz .
(a) Solve for the rms thermal noise voltage v_{t} in the band.

$$
v_{t}=\sqrt{4 k T R\left(f_{2}-f_{1}\right)}=1.79 \mu \mathrm{~V}
$$

(b) Solve for the rms excess noise voltage $v_{e x}$ in the band.

$$
v_{e x}=\sqrt{10^{N I / 10}\left(I_{D C} R\right)^{2} \log \left(f_{2} / f_{1}\right)}=3.08 \mu \mathrm{~V}
$$

(c) Solve for the total rms noise voltage v_{n} in the band.

$$
v_{n}=\sqrt{v_{t}^{2}+v_{e x}^{2}}=3.56 \mu \mathrm{~V}
$$

2. A $0.01 \mu \mathrm{~F}$ capacitor is connected in parallel with a $10 \mathrm{k} \Omega$ resistor. Solve for the rms thermal noise voltage generated by the circuit in the band from 10 kHz to 100 kHz . You are given the following integral for reference:

$$
\begin{gathered}
\int_{x_{1}}^{x_{2}} \frac{d x}{a+b x^{2}}=\frac{1}{\sqrt{a b}}\left[\tan ^{-1}\left(x_{2} \sqrt{\frac{b}{a}}\right)-\tan ^{-1}\left(x_{1} \sqrt{\frac{b}{a}}\right)\right] \\
Z=R \| \frac{1}{j \omega C}=\frac{R}{1+j \omega R C} \quad \operatorname{Re}(Z)=\operatorname{Re}\left(\frac{R}{1+j \omega R C} \frac{1-j \omega R C}{1-j \omega R C}\right)=\frac{R}{1+(\omega R C)^{2}} \\
v_{t}^{2}=4 k T R \int_{10 \mathrm{kHz}}^{100 \mathrm{kHz}} \frac{d f}{1+(2 \pi f R C)^{2}} \\
=\frac{2 k T}{\pi C}\left[\arctan \left(2 \pi f_{2} R C\right)-\arctan \left(2 \pi f_{1} R C\right)\right]=3.61 \times 10^{-14} \mathrm{~V}^{2} \\
v_{t}=\sqrt{v_{t}^{2}}=190 \mathrm{nV}
\end{gathered}
$$

3. A non-inverting amplifier has the gain with feedback $A_{v}=100$ and the input resistance $R_{i}=\infty$. With a source resistor $R_{S}=100 \mathrm{k} \Omega$ connected from input to ground, the rms noise voltage at the output over the band $\Delta f=100 \mathrm{kHz}$ is found to be $v_{n o 1}=1.5 \mathrm{mV}$. When a resistor $R_{1}=20 \mathrm{kHz}$ is connected in parallel with R_{S} the noise output voltage drops to $v_{n o 2}=0.6 \mathrm{mV}$. If the correlation between v_{n} and i_{n} is neglected, solve for the rms values of v_{n} and i_{n} over the band Δf at the amplifier input.

$$
\begin{aligned}
v_{n}^{2}+i_{n}^{2} R_{S}^{2} & =\frac{v_{n o 1}^{2}}{A_{v}^{2}}-4 k T R_{S} \Delta f \Longrightarrow v_{n}^{2}+10^{10} i_{n}^{2}=6.5 \times 10^{-11} \\
v_{n}^{2}+i_{n}^{2}\left(R_{S} \| R_{1}\right)^{2} & =\frac{v_{n o 2}^{2}}{A_{v}^{2}}-4 k T R_{S} \| R_{1} \Delta f \Longrightarrow v_{n}^{2}+2.778 \times 10^{8} i_{n}^{2}=9.333 \times 10^{-12}
\end{aligned}
$$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{cc}
1 & 10^{10} \\
1 & 2.778 \times 10^{8}
\end{array}\right|=2.778 \times 10^{8}-10^{10}=-9.722 \times 10^{9} \\
v_{n}^{2} & =\frac{1}{\Delta}\left|\begin{array}{cc}
6.5 \times 10^{-11} & 10^{10} \\
9.333 \times 10^{-12} & 2.778 \times 10^{8}
\end{array}\right| \\
& =\frac{6.5 \times 10^{-11} \times 2.778 \times 10^{8}-9.333 \times 10^{-12} \times 2.778 \times 10^{8}}{-9.722 \times 10^{9}} \\
& =7.743 \times 10^{-12} \\
v_{n} & =2.783 \mu \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
i_{n}^{2} & =\frac{1}{\Delta}\left|\begin{array}{cc}
1 & 6.5 \times 10^{-11} \\
1 & 9.333 \times 10^{-12}
\end{array}\right| \\
& =\frac{9.333 \times 10^{-12}-6.5 \times 10^{-11}}{-9.722 \times 10^{9}} \\
& =5.726 \times 10^{-21} \\
i_{n} & =75.67 \mathrm{pA}
\end{aligned}
$$

