ECE 6416 Quiz 1

October 7, 2009

Professor Leach Name______ Instructions. Print your name in the space above and at the top of all other pages in your quiz. Place a box around each answer. Express each numerical answer as a decimal number. Numerical values are $4kT_0 = 1.6 \times 10^{-20}$ J and $q = 1.6 \times 10^{-19}$ C. Honor Code: I have neither given nor received help on this quiz. Initials _____

- 1. A $10 \text{ k}\Omega$ resistor has a noise index of -15 dB. The dc current flowing through the resistor is $I_{DC} = 1 \text{ mA}$. The frequency band of interest is the band from 20 Hz to 20 kHz.
 - (a) Solve for the rms thermal noise voltage v_t in the band.

$$v_t = \sqrt{4kTR(f_2 - f_1)} = 1.79\,\mu\text{V}$$

(b) Solve for the rms excess noise voltage v_{ex} in the band.

$$v_{ex} = \sqrt{10^{NI/10} \left(I_{DC}R\right)^2 \log\left(f_2/f_1\right)} = 3.08 \,\mu\text{V}$$

(c) Solve for the total rms noise voltage v_n in the band.

$$v_n = \sqrt{v_t^2 + v_{ex}^2} = 3.56 \,\mu \text{V}$$

2. A $0.01 \,\mu\text{F}$ capacitor is connected in parallel with a $10 \,\text{k}\Omega$ resistor. Solve for the rms thermal noise voltage generated by the circuit in the band from $10 \,\text{kHz}$ to $100 \,\text{kHz}$. You are given the following integral for reference:

$$\int_{x_1}^{x_2} \frac{dx}{a+bx^2} = \frac{1}{\sqrt{ab}} \left[\tan^{-1} \left(x_2 \sqrt{\frac{b}{a}} \right) - \tan^{-1} \left(x_1 \sqrt{\frac{b}{a}} \right) \right]$$
$$Z = R \| \frac{1}{j\omega C} = \frac{R}{1+j\omega RC} \qquad \operatorname{Re}\left(Z \right) = \operatorname{Re}\left(\frac{R}{1+j\omega RC} \frac{1-j\omega RC}{1-j\omega RC} \right) = \frac{R}{1+(\omega RC)^2}$$
$$v_t^2 = 4kTR \int_{10\,\mathrm{kHz}}^{100\,\mathrm{kHz}} \frac{df}{1+(2\pi f RC)^2}$$

$$J_{10 \text{ kHz}} = \frac{1 + (2\pi f RC)^2}{\pi C} \left[\arctan\left(2\pi f_2 RC\right) - \arctan\left(2\pi f_1 RC\right) \right] = 3.61 \times 10^{-14} \text{ V}^2$$
$$v_t = \sqrt{v_t^2} = 190 \text{ nV}$$

3. A non-inverting amplifier has the gain with feedback $A_v = 100$ and the input resistance $R_i = \infty$. With a source resistor $R_S = 100 \,\mathrm{k\Omega}$ connected from input to ground, the rms noise voltage at the output over the band $\Delta f = 100 \,\mathrm{kHz}$ is found to be $v_{no1} = 1.5 \,\mathrm{mV}$. When a resistor $R_1 = 20 \,\mathrm{kHz}$ is connected in parallel with R_S the noise output voltage drops to $v_{no2} = 0.6 \,\mathrm{mV}$. If the correlation between v_n and i_n is neglected, solve for the rms values of v_n and i_n over the band Δf at the amplifier input.

$$v_n^2 + i_n^2 R_S^2 = \frac{v_{no1}^2}{A_v^2} - 4kTR_S\Delta f \Longrightarrow v_n^2 + 10^{10}i_n^2 = 6.5 \times 10^{-11}$$
$$v_n^2 + i_n^2 (R_S \| R_1)^2 = \frac{v_{no2}^2}{A_v^2} - 4kTR_S \| R_1\Delta f \Longrightarrow v_n^2 + 2.778 \times 10^8 i_n^2 = 9.333 \times 10^{-12}$$

$$\Delta = \begin{vmatrix} 1 & 10^{10} \\ 1 & 2.778 \times 10^8 \end{vmatrix} = 2.778 \times 10^8 - 10^{10} = -9.722 \times 10^9$$
$$v_n^2 = \frac{1}{\Delta} \begin{vmatrix} 6.5 \times 10^{-11} & 10^{10} \\ 9.333 \times 10^{-12} & 2.778 \times 10^8 \end{vmatrix}$$
$$= \frac{6.5 \times 10^{-11} \times 2.778 \times 10^8 - 9.333 \times 10^{-12} \times 2.778 \times 10^8}{-9.722 \times 10^9}$$
$$= 7.743 \times 10^{-12}$$
$$v_n = 2.783 \,\mu\text{V}$$

$$i_n^2 = \frac{1}{\Delta} \begin{vmatrix} 1 & 6.5 \times 10^{-11} \\ 1 & 9.333 \times 10^{-12} \end{vmatrix}$$
$$= \frac{9.333 \times 10^{-12} - 6.5 \times 10^{-11}}{-9.722 \times 10^9}$$
$$= 5.726 \times 10^{-21}$$
$$i_n = 75.67 \,\mathrm{pA}$$