ECE 6416 Quiz 2

November 16, 2009
Professor Leach
Name
Instructions. Print your name in the space above and at the top of all other pages in your quiz. Place a box around each answer. Express each numerical answer as a decimal number. Numerical values are $4 k T_{0}=1.6 \times 10^{-20} \mathrm{~J}, q=1.6 \times 10^{-19} \mathrm{C}$, and $V_{T}=25 \mathrm{mV}$. Honor Code: I have neither given nor received help on this quiz. Initials

1. An amplifier has a voltage gain of 300 and an input resistance of $5 \mathrm{k} \Omega$. A white noise source with an output resistance $R_{S}=2 \mathrm{k} \Omega$ is connected to the amplifier input. With the source voltage zeroed, the rms amplifier noise output voltage is 0.470 mV . With the rms spot noise output voltage of the source set to $v_{s}=0.1 \mu \mathrm{~V} / \sqrt{\mathrm{Hz}}$, the rms amplifier output voltage is 4.82 mV . Solve for the noise factor and the noise figure of the amplifier.

$$
v_{n o 1}^{2}=\left(\frac{A R_{i}}{R_{S}+R_{i}}\right)^{2} 4 k T R_{S} B_{n} \times F \quad v_{n o 2}^{2}=\left(\frac{A R_{i}}{R_{S}+R_{i}}\right)^{2}\left(S_{v} B_{n}+4 k T R_{S} B_{n} \times F\right)
$$

Take ratios and solve for F.

$$
\begin{aligned}
F=\frac{S_{v}}{\left(\frac{v_{n o 2}^{2}}{v_{n o 1}^{2}}-1\right) 4 k T R_{S}}= & \frac{\left(0.1 \times 10^{-6}\right)^{2}}{\left[\frac{\left(4.82 \times 10^{-3}\right)^{2}}{\left(0.470 \times 10^{-3}\right)^{2}}-1\right] \times 1.6 \times 10^{-20} \times 2000}=3 \\
& N F=10 \log (F)=4.77
\end{aligned}
$$

2. An amplifier has $v_{n}=3 \mathrm{nV} / \sqrt{\mathrm{Hz}}, i_{n}=6 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and $\rho=0.15$. The amplifier is driven from a voltage source with an output resistance $R_{S}=1 \mathrm{k} \Omega$. Assume the noise bandwidth $B_{n}=1 \mathrm{~Hz}$.
(a) Calculate the noise factor F and noise figure $N F$.

$$
F=\frac{4 k T R_{S}+v_{n}^{2}+2 v_{n} i_{n} R_{S} \rho+i_{n}^{2} R_{S}^{2}}{4 k T R_{S}}=4.15 \quad N F=10 \log (F)=6.18
$$

(b) Calculate the optimum source resistance $R_{s o}$.

$$
R_{s o}=\frac{v_{n}}{i_{n}}=500 \Omega
$$

(c) A resistor is added in parallel with the amplifier input to make the source resistance seen by the amplifier equal to $R_{s o}$. What is the required value of the resistor?

$$
R_{p}=\frac{R_{S} R_{s o}}{R_{S}-R_{s o}}=1000 \Omega
$$

(d) What are the new noise figure and noise factor?

$$
\begin{gathered}
V_{i(o c)}=\frac{R_{p}}{R_{S}+R_{p}} V_{s}+V_{t s o}+V_{n}+I_{n} R_{s o}=\frac{R_{p}}{R_{S}+R_{p}}\left[V_{s}+\frac{R_{S}+R_{p}}{R_{p}}\left(V_{t s o}+V_{n}+I_{n} R_{s o}\right)\right] \\
V_{n i}=\frac{R_{S}+R_{p}}{R_{p}}\left(V_{t s o}+V_{n}+I_{n} R_{s o}\right) \\
F=\frac{\left(\frac{R_{S}+R_{p}}{R_{p}}\right)^{2}\left(4 k T R_{s o}+v_{n}^{2}+2 v_{n} i_{n} R_{s o} \rho+i_{n}^{2} R_{s o}^{2}\right)}{4 k T R_{S}}=7.18 \quad N F=10 \log (F)=8.56
\end{gathered}
$$

3. The figure shows the ac signal circuit of a common-base amplifier. The BJT has the parameters $\beta=150, r_{x}=50 \Omega$, and $r_{0}=\infty$. It is given that $R_{s}=50 \Omega$ and $R_{C}=30 \mathrm{k} \Omega$.
(a) If flicker noise is neglected, calculate the optimum bias current $I_{C(o p t)}$ and the rms equivalent noise voltage in series with V_{s} for the band $0 \mathrm{~Hz} \leq f \leq 50 \mathrm{kHz}$.

$$
\begin{gathered}
I_{C(o p t)}=\frac{V_{T}}{R_{s}+r_{x}} \frac{\beta}{\sqrt{1+\beta}}=3.05 \mathrm{~mA} \\
v_{n i}^{2}=4 k T\left(R_{s}+r_{x}\right) B_{n} \frac{\sqrt{1+\beta}}{\sqrt{1+\beta}-1}=8.71 \times 10^{-14} \mathrm{~V}^{2} \quad v_{n i}=2.95 \times 10^{-7} \mathrm{~V}
\end{gathered}
$$

(b) What is the noise factor and noise figure for the band $0 \mathrm{~Hz} \leq f \leq 50 \mathrm{kHz}$?

$$
F=\frac{v_{n i}^{2}}{4 k T R_{s} B_{n}}=2.18 \quad N F=10 \log (F)=3.38
$$

(c) What is the rms noise voltage at the amplifier output for the band $0 \mathrm{~Hz} \leq f \leq 50 \mathrm{kHz}$?

$$
A_{v}=\frac{i_{e}^{\prime}}{v_{s}} \frac{i_{c}^{\prime}}{i_{e}^{\prime}} \frac{v_{o}}{i_{c}^{\prime}}=\left(-\frac{1}{r_{e}^{\prime}+R_{s}}\right) \alpha\left(-R_{C}\right)=+510 \quad v_{n o}=A_{v} v_{n i}=0.150 \mathrm{mV}
$$

