The answers to the problems are given. You must show how you get the answers for credit. Please follow the homework guidelines described at

http://users.ece.gatech.edu/~mleach/ece3050/hwguide.html

- 1. Let $v_n(t)$ be a random voltage that has a normal or Gaussian probability density function with a mean value of zero and a standard deviation or mean-square of v_{rms} . In a 24 h period, the total time that the waveform exceeds a value v_1 can be estimated as 24 h multiplied by the probability that $|v_n(t)| > v_1$. Calculate the time that (a) $|v_n(t)| > 3v_{rms}$ [about 4 min], (b) $|v_n(t)| > 4v_{rms}$ [about 5 s], and (c) $|v_n(t)| > 6v_{rms}$ [about 0.2 ms].
- 2. Two resistors R_1 and R_2 are connected in parallel. The two resistors are in thermal equilibrium.
 - (a) Suppose that only R_1 generates thermal noise and R_2 is noiseless, show that the average thermal noise power in watts delivered by R_1 to R_2 in the band Δf is given by

$$P_{12} = \frac{4kTR_1R_2\Delta f}{\left(R_1 + R_2\right)^2}$$

- (b) Suppose that only R_2 generates thermal noise and R_1 is noiseless, show that the average thermal noise power P_{21} delivered by R_2 to R_1 in the band Δf is given by the same expression obtained above.
- (c) Note that $P_{12} = P_{21}$. If the two answers were not the same, could the two resistors be in thermal equilibrium? How would the temperatures of the individual resistors vary with time if $P_{12} > P_{21}$?
- 3. Calculate the thermal spot noise voltage in V/ $\sqrt{\text{Hz}}$ (volts per root hertz) at the standard temperature across the terminals of the circuit $[v_{rms} = 8.72 \text{ nV}/\sqrt{\text{Hz}}]$

4. Calculate the spot noise voltage at the output of the circuit at the frequency f = 1.5 kHz. Assume $T = T_0 = 290 \text{ K}$. $[9.83 \text{ nV}/\sqrt{\text{Hz}}]$

- 5. A 1 M Ω resistor has a dc voltage across it of 4 V. At the frequency f = 100 Hz, the spot noise voltage across the resistor is $v_n/\sqrt{\Delta f} = 400 \text{ nV}/\sqrt{\text{Hz}}$.
 - (a) Show the flicker noise coefficient is $K_f = 9 \times 10^{-13}$.
 - (b) Show that the noise index is $NI = 3.17 \, \text{dB}$.
 - (c) The mean-square short-circuit noise current generated by the resistor is given by

$$i_n^2 = \frac{4kT\Delta f}{R} + \frac{K_f I_{DC}^2 \Delta f}{f}$$

Show that the flicker noise corner frequency is $f_{flk} = 900$ Hz.

- 6. A 100 mH lossy inductor has a measured impedance magnitude of $8 \text{ k}\Omega$ at the frequency f = 10 kHz. Show that the open-circuit thermal spot noise voltage generated by the inductor at 10 kHz is $v_t/\sqrt{\Delta f} = 8.9 \text{ nV}/\sqrt{\text{Hz}}$. Note that $|Z|^2 = R^2 + (\omega L)^2$ for the inductor.
- 7. If the diode generates only shot noise and the resistor generates only thermal noise, solve for the ac rms noise output voltage over the band from 1 kHz to 3.5 kHz. The diode is modeled as a shot noise current source in parallel with the diode small-signal resistance given by $r_d = \eta V_T / I_D$, where η is the emission coefficient or idealty factor and I_D is the dc current in the diode. Assume $\eta = 2$ and $V_T = 25$ mV. $[v_{rms} = 23.9 \text{ nV}]$