An RF amplifier designed to operate at a frequency of 2.5 GHz has the following noise parameters:

	Freque 2.5 GH	ency Iz	NF_{min} 1.82 dB	$\frac{ \Gamma_{opt} }{0.38}$	∠Γ _{opt} 94.1 °	R_n 15 Ω	
$ s_{11} \\ 0.63$	$\angle s_{11} \\ -117^{\circ}$	$ s_{21} $ 6.4	$\angle s_{21} \\ -97^{\circ}$	$ s_{12} $ 0.011	$\angle s_{12} \\ -144^{\circ}$	$ s_{22} $ 0.21	$\angle s_{22}$ 66 °

The characteristic impedance of the transmission lines used to measure the parameter is $Z_c = 50 \Omega$.

- 1. (a) Design a two transmission line noise matching network to match a 50 Ω source to the input to the amplifier. Assume that each transmission line has a characteristic impedance $Z_c = 75 \Omega$.
 - (b) Calculate the dB decrease of the operating gain G_P with the noise matching network compared to the operating gain which would be obtained with a conjugate matching network between the source and the amplifier. Note that Γ_{in} in the equation for G_p is the reflection coefficient looking into the matching network.
 - (c) Use a math program such as Matlab or Mathcad to calculate and plot the noise figure NF as a function of frequency over the band $2.5 \text{ GHz} \pm 10\%$.
- 2. Repeat problem (1) for a noise matching network consisting of a series capacitor C_1 and a shunt inductor L_1 .
- 3. Repeat problem (1) for a noise matching network consisting of a series inductor L_2 and a shunt capacitor C_2 .
- 4. Which network results in the lowest NF over the band about $2.5 \,\mathrm{GHz}$?