ECE 6416 Quiz 1

October 6, 2010

Professor Leach Name_ **Instructions.** Print your name in the space above and at the top of all other pages in your quiz. Clearly mark each answer. Express each numerical answer as a decimal number. Numerical values are $4kT_0 = 1.6 \times 10^{-20}$ J and $q = 1.6 \times 10^{-19}$ C. Honor Code: I have neither given nor received help on this quiz. Initials _

- 1. The figure shows a resistive circuit.
 - (a) Solve for the mean-square value of V_n using the generalized Nyquist formula.
 - (b) Solve for V_n by replacing each resistor with its Thévenin model and using superposition. Convert the answer to the mean-square value.
 - (c) Show that the two solutions are equivalent.

(b)

$$V_{n} = V_{t1} + V_{t2} \frac{R_{3}}{R_{2} + R_{3}} + V_{t3} \frac{R_{2}}{R_{2} + R_{3}}$$

$$v_{n}^{2} = 4kTR_{1}\Delta f + 4kTR_{2}\Delta f \left(\frac{R_{3}}{R_{2} + R_{3}}\right)^{2} + 4kTR_{3}\Delta f \left(\frac{R_{2}}{R_{2} + R_{3}}\right)^{2}$$

$$= 4kT \left(R_{1} + \frac{R_{2}R_{3}^{2} + R_{2}^{2}R_{3}}{(R_{2} + R_{3})^{2}}\right)\Delta f$$

$$= 4kT \left(R_{1} + R_{2} \|R_{3}\right)\Delta f$$

(c) They are already equal to each other.

2. Shown is the noise model of an amplifier.

(a) Solve for the noise current I_{ni} in parallel with I_s that generates the same noise as all noise sources in the circuit.

- (b) Set $I_{ni} = I_{ts} + V'_n/R_s + I'_n$ and solve for V'_n and I'_n . (c) Solve for the mean-square values $v'_n^2 = \overline{V'_n V'_n}^*$ and $i'_n^2 = \overline{I'_n I'_n}^*$. In the expressions, let $\overline{V_n I^*_n} = v_n i_n \gamma$. Express all answers in terms of v_n (or v_n^2), i_n (or i_n^2), and γ . (d) Solve for $\overline{V'_n I'_n}^*$ in the expression for the correlation coefficient $\gamma' = \overline{V'_n I'_n}^* / v'_n i'_n$ between
- V'_n and I'_n . You do not have to write out the equation for γ' .

(a)

$$I_{i(sc)} = I_s + I_{ts} + I_{t1} + I_n + \frac{V_n}{R_s ||R_1|} = I_s + I_{ni}$$
$$I_{ni} = I_{ts} + I_{t1} + I_n + \frac{V_n}{R_s ||R_1|} = I_{ts} + I_{t1} + I_n + \frac{V_n}{R_1} + \frac{V_n}{R_s}$$

(b)

$$V'_n = V_n$$
 $I'_n = I_{t1} + I_n + \frac{V_n}{R_1}$

(c)

$$v_n'^2 = v_n^2 \qquad i_n'^2 = \frac{4kT\Delta f}{R_1} + i_n^2 + 2\gamma \frac{v_n i_n}{R_1} + \frac{v_n^2}{R_1^2}$$

(d)

$$\overline{V_n I_n^{\prime *}} = \overline{V_n \left(I_{t1} + I_n + \frac{V_n}{R_1}\right)^*} = \frac{\overline{V_n V_n^*}}{R_1} + \overline{V_n I_n^*} = \frac{v_n^2}{R_1} + \gamma v_n i_n$$

- 3. For $R_1 = 4 \,\mathrm{k}\Omega$, $R_2 = 2 \,\mathrm{k}\Omega$, and $C = 0.01 \,\mu\mathrm{F}$ and $f = 10 \,\mathrm{kHz}$,
 - (a) Solve for the spot noise voltage in nV across the circuit due to R_1 .
 - (b) Solve for the spot noise voltage in nV across the circuit due to R_2 .
 - (c) Solve for the total spot noise voltage in nV across the circuit.

$$C \xrightarrow{+} R_2 V_n$$
(a)

$$V_{n1} = V_{t1} \frac{R_2}{R_1 + R_2 + \frac{1}{j\omega C}} \qquad v_{n1}^2 = 4kTR_1 \left| \frac{R_2}{R_1 + R_2 + \frac{1}{j\omega C}} \right|^2 = 2.58 \,\mathrm{nV}$$

(b)

$$V_{n2} = V_{t2} \frac{R_1 + \frac{1}{j\omega C}}{R_1 + R_2 + \frac{1}{j\omega C}} \qquad v_{n2}^2 = 4kTR_2 \left| \frac{R_1 + \frac{1}{j\omega C}}{R_1 + R_2 + \frac{1}{j\omega C}} \right|^2 = 3.92 \,\mathrm{nV}$$

(c)

$$v_n^2 = \sqrt{v_{n1}^2 + v_{n2}^2} = 4.69 \,\mathrm{nV}$$