ECE 6416 Quiz 1

October 6, 2010
Professor Leach
Name
Instructions. Print your name in the space above and at the top of all other pages in your quiz. Clearly mark each answer. Express each numerical answer as a decimal number. Numerical values are $4 k T_{0}=1.6 \times 10^{-20} \mathrm{~J}$ and $q=1.6 \times 10^{-19} \mathrm{C}$. Honor Code: I have neither given nor received help on this quiz. Initials \qquad

1. The figure shows a resistive circuit.
(a) Solve for the mean-square value of V_{n} using the generalized Nyquist formula.
(b) Solve for V_{n} by replacing each resistor with its Thévenin model and using superposition. Convert the answer to the mean-square value.
(c) Show that the two solutions are equivalent.

(a)

$$
v_{n}^{2}=4 k T\left(R_{1}+R_{2} \| R_{3}\right) \Delta f
$$

(b)

$$
\begin{aligned}
V_{n} & =V_{t 1}+V_{t 2} \frac{R_{3}}{R_{2}+R_{3}}+V_{t 3} \frac{R_{2}}{R_{2}+R_{3}} \\
v_{n}^{2} & =4 k T R_{1} \Delta f+4 k T R_{2} \Delta f\left(\frac{R_{3}}{R_{2}+R_{3}}\right)^{2}+4 k T R_{3} \Delta f\left(\frac{R_{2}}{R_{2}+R_{3}}\right)^{2} \\
& =4 k T\left(R_{1}+\frac{R_{2} R_{3}^{2}+R_{2}^{2} R_{3}}{\left(R_{2}+R_{3}\right)^{2}}\right) \Delta f \\
& =4 k T\left(R_{1}+R_{2} \| R_{3}\right) \Delta f
\end{aligned}
$$

(c) They are already equal to each other.
2. Shown is the noise model of an amplifier.
(a) Solve for the noise current $I_{n i}$ in parallel with I_{s} that generates the same noise as all noise sources in the circuit.
(b) Set $I_{n i}=I_{t s}+V_{n}^{\prime} / R_{s}+I_{n}^{\prime}$ and solve for V_{n}^{\prime} and I_{n}^{\prime}.
(c) Solve for the mean-square values $v_{n}^{\prime 2}=\overline{V_{n}^{\prime} V_{n}^{\prime *}}$ and $i_{n}^{\prime 2}=\overline{I_{n}^{\prime} I_{n}^{\prime *}}$. In the expressions, let $\overline{V_{n} I_{n}^{*}}=v_{n} i_{n} \gamma$. Express all answers in terms of v_{n} (or v_{n}^{2}), i_{n} (or i_{n}^{2}), and γ.
(d) Solve for $\overline{V_{n}^{\prime} I_{n}^{\prime *}}$ in the expression for the correlation coefficient $\gamma^{\prime}=\overline{V_{n}^{\prime} I_{n}^{\prime *}} / v_{n}^{\prime} i_{n}^{\prime}$ between V_{n}^{\prime} and I_{n}^{\prime}. You do not have to write out the equation for γ^{\prime}.

(a)

$$
\begin{aligned}
I_{i(s c)} & =I_{s}+I_{t s}+I_{t 1}+I_{n}+\frac{V_{n}}{R_{s} \| R_{1}}=I_{s}+I_{n i} \\
I_{n i} & =I_{t s}+I_{t 1}+I_{n}+\frac{V_{n}}{R_{s} \| R_{1}}=I_{t s}+I_{t 1}+I_{n}+\frac{V_{n}}{R_{1}}+\frac{V_{n}}{R_{s}}
\end{aligned}
$$

(b)

$$
V_{n}^{\prime}=V_{n} \quad I_{n}^{\prime}=I_{t 1}+I_{n}+\frac{V_{n}}{R_{1}}
$$

(c)

$$
v_{n}^{\prime 2}=v_{n}^{2} \quad i_{n}^{\prime 2}=\frac{4 k T \Delta f}{R_{1}}+i_{n}^{2}+2 \gamma \frac{v_{n} i_{n}}{R_{1}}+\frac{v_{n}^{2}}{R_{1}^{2}}
$$

(d)

$$
\overline{V_{n} I_{n}^{* *}}=\overline{V_{n}\left(I_{t 1}+I_{n}+\frac{V_{n}}{R_{1}}\right)^{*}}=\overline{\frac{\overline{V_{n} V_{n}^{*}}}{R_{1}}+\overline{V_{n} I_{n}^{*}}}=\frac{v_{n}^{2}}{R_{1}}+\gamma v_{n} i_{n}
$$

3. For $R_{1}=4 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega$, and $C=0.01 \mu \mathrm{~F}$ and $f=10 \mathrm{kHz}$,
(a) Solve for the spot noise voltage in nV across the circuit due to R_{1}.
(b) Solve for the spot noise voltage in nV across the circuit due to R_{2}.
(c) Solve for the total spot noise voltage in $n V$ across the circuit.

(a)

$$
V_{n 1}=V_{t 1} \frac{R_{2}}{R_{1}+R_{2}+\frac{1}{j \omega C}} \quad v_{n 1}^{2}=4 k T R_{1}\left|\frac{R_{2}}{R_{1}+R_{2}+\frac{1}{j \omega C}}\right|^{2}=2.58 \mathrm{nV}
$$

(b)

$$
V_{n 2}=V_{t 2} \frac{R_{1}+\frac{1}{j \omega C}}{R_{1}+R_{2}+\frac{1}{j \omega C}} \quad v_{n 2}^{2}=4 k T R_{2}\left|\frac{R_{1}+\frac{1}{j \omega C}}{R_{1}+R_{2}+\frac{1}{j \omega C}}\right|^{2}=3.92 \mathrm{nV}
$$

(c)

$$
v_{n}^{2}=\sqrt{v_{n 1}^{2}+v_{n 2}^{2}}=4.69 \mathrm{nV}
$$

