LECTURE 200 - CASCODE OP AMPS II
 (READING: GHLM - 443-453, AH - 293-309)

Objective

The objective of this presentation is:
1.) Develop cascode op amp architectures
2.) Show how to design with the cascode op amps

Outline

- Op amps with cascoding in the first stage
- Op amps with cascoding in the second stage
- Folded cascode op amp
- Summary

Input Common Mode Range for Two Types of Differential Amplifier Loads

Differential amplifier with a current mirror load.

Differential amplifier with current source loads.

Fig. 200-01

In order to improve the ICMR, it is desirable to use current source (sink) loads without losing half the gain.
The resulting solution is the folded cascode op amp.

The Folded Cascode Op Amp

We have examined the small signal performance and the frequency response in an earlier lecture.

PSRR of the Folded Cascode Op Amp

Consider the following circuit used to model the $P S R R$-:

This model assumes that gate, source and drain of M11 and the gate and source of M9 all vary with $V_{S S}$.

We shall examine $V_{\text {out }} / V_{S S}$ rather than $P S R R^{-}$. (Small $V_{\text {out }} / V_{S S}$ will lead to large $P S R R^{-}$.) The transfer function of $V_{\text {out }} / V_{s s}$ can be found as

$$
\frac{V_{\text {out }}}{V_{s s}} \approx \frac{s C_{\text {gd } 9} R_{\text {out }}}{s C_{\text {out }} R_{\text {out }}+1} \quad \text { for } C_{g d 9}<C_{\text {out }}
$$

The approximate PSRR- is sketched on the next page.

Frequency Response of the PSRR- of the Folded Cascode Op Amp

We see that the PSRR of the cascode op amp is much better than the two-stage op amp.

Design Approach for the Folded-Cascode Op Amp

Step	Relationship/ Requirement	Design Equation/Constraint	Comments
1	Slew Rate	$I_{3}=S R \cdot C_{L}$	
2	Bias currents in output cascodes	$I_{4}=I_{5}=1.2 I_{3}$ to $1.5 I_{3}$	Avoid zero current in cascodes
3	Maximum output voltage, $v_{\text {out }}(\max)$	$\begin{aligned} & S_{5}=\frac{8 I_{5}}{K_{P}{ }^{\prime} V_{S D 5^{2}}{ }^{2}}, S_{7}=\frac{8 I_{7}}{K_{P} V_{S D 7^{2}}} \text { Let } \mathrm{S}_{4}=\mathrm{S}_{14}=\mathrm{S}_{5} \& \\ & \mathrm{~S}_{13}=\mathrm{S}_{6}=\mathrm{S}_{7} \end{aligned}$	$\begin{aligned} & V_{S D 5}(\mathrm{sat})=V_{S D 7}(\mathrm{sat})= \\ & 0.5\left[V_{D D^{-}} V_{\text {out }}(\mathrm{min})\right] \end{aligned}$
4	Minimum output voltage, $v_{\text {out }}(\min)$	$\begin{aligned} & S_{11}=\frac{8 I_{11}}{K_{N} V_{D S 11^{2}}^{2}}, S_{9}=\frac{8 I_{9}}{K_{N} V_{D S 9^{2}}} \text { Let } \mathrm{S}_{10}=\mathrm{S}_{11} \& \\ & \mathrm{~S}_{8}=\mathrm{S}_{9} \end{aligned}$	$\begin{aligned} & V_{D S 9}(\mathrm{sat})=V_{D S 11}(\mathrm{sat})= \\ & 0.5\left(V_{\text {out }}(\mathrm{min})-\mid V_{S S}{ }^{\mathrm{l}}\right) \end{aligned}$
5	Self-bias cascode	$R_{1}=V_{S D 14}(\mathrm{sat}) / I_{14}$ and $R_{2}=V_{D S 8}(\mathrm{sat}) / I_{6}$	
6	$G B=\frac{g_{m 1}}{C_{L}}$	$S_{1}=S_{2}=\frac{g_{m 1}^{2}}{K_{N}{ }^{\prime} I_{3}}=\frac{G B^{2} C_{L}^{2}}{K_{N}^{\prime} I_{3}}$	
7	Minimum input CM	$\mathrm{S}_{3}=\frac{2 I_{3}}{K_{N}\left(V_{i n}(\mathrm{~min})-V_{S S^{-}} \sqrt{\frac{I_{3}}{K_{N} \mathrm{~S}_{1}}}-V_{T 1}\right)^{2}}$	
8	Maximum input CM	$\mathrm{S}_{4}=\mathrm{S}_{5}=\frac{2 I_{4}}{K_{P}\left(V_{D D^{-}} V_{\text {in }}(\max)+V_{T 1}\right)^{2}}$	S_{4} and S_{5} must meet or exceed the value in step 3
9	Differential Voltage Gain	$\frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{g_{m 1}}{2}+\frac{g_{m 2}}{2(1+k)}\right) R_{\text {out }}=\left(\frac{2+k}{2+2 k}\right) g_{m I} R_{\text {out }}$	
10	Power dissipation	$P_{\text {diss }}=\left(V_{D D^{-}} V_{S S}\right)\left(I_{3}+I_{12}+I_{10}+I_{11}\right)$	

Example 3 - Design of a Folded-Cascode Op Amp

Follow the procedure given to design the folded-cascode op amp when the slew rate is $10 \mathrm{~V} / \mu \mathrm{s}$, the load capacitor is 10 pF , the maximum and minimum output voltages are $\pm 2 \mathrm{~V}$ for $\pm 2.5 \mathrm{~V}$ power supplies, the $G B$ is 10 MHz , the minimum input common mode voltage is -1.5 V and the maximum input common mode voltage is 2.5 V . The differential voltage gain should be greater than $5,000 \mathrm{~V} / \mathrm{V}$ and the power dissipation should be less than 5 mW . Use channel lengths of $1 \mu \mathrm{~m}$.

Solution

Following the approach outlined above we obtain the following results.

$$
I_{3}=S R \cdot C_{L}=10 \times 10^{6} \cdot 10^{-11}=100 \mu \mathrm{~A}
$$

Select $I_{4}=I_{5}=125 \mu \mathrm{~A}$.
Next, we see that the value of $0.5\left(V_{D D^{-}} V_{\text {out }}(\max)\right)$ is $0.5 \mathrm{~V} / 2$ or 0.25 V . Thus,

$$
S_{4}=S_{5}=S_{14}=\frac{2 \cdot 125 \mu \mathrm{~A}}{50 \mu \mathrm{~A} / \mathrm{V}^{2} \cdot(0.25 \mathrm{~V})^{2}}=\frac{2 \cdot 125 \cdot 16}{50}=80
$$

and assuming worst case currents in M6 and M7 gives,

$$
S_{6}=S_{7}=S_{13}=\frac{2 \cdot 125 \mu \mathrm{~A}}{50 \mu \mathrm{~A} / \mathrm{V}^{2}(0.25 \mathrm{~V})^{2}}=\frac{2 \cdot 125 \cdot 16}{50}=80
$$

The value of $0.5\left(V_{\text {out }}(\mathrm{min})-\left|V_{S S}\right|\right)$ is also 0.25 V which gives the value of S_{8}, S_{9}, S_{10} and S_{11}
as $S_{8}=S_{9}=S_{10}=S_{11}=\frac{2 \cdot I_{8}}{K_{N}{ }^{\prime} V_{D S 8^{2}}}=\frac{2 \cdot 125}{110 \cdot(0.25)^{2}}=36.36$

Example 3-Continued

The value of R_{1} and R_{2} is equal to $0.25 \mathrm{~V} / 125 \mu \mathrm{~A}$ or $2 \mathrm{k} \Omega$. In step 6 , the value of $G B$ gives S_{1} and S_{2} as

$$
S_{1}=S_{2}=\frac{G B^{2} \cdot C_{L}^{2}}{K_{N} I_{3}}=\frac{\left(20 \pi \times 10^{6}\right)^{2}\left(10^{-11}\right)^{2}}{110 \times 10^{-6} \cdot 100 \times 10^{-6}}=35.9
$$

The minimum input common mode voltage defines S_{3} as

$$
S_{3}=\frac{2 I_{3}}{K_{N},\left(V_{i n}(\min)-V_{S S^{-}} \sqrt{\frac{I_{3}}{K_{N} S_{1}}}-V_{T 1}\right)^{2}}=\frac{200 \times 10-6}{110 \times 10-6\left(-1.5+2.5-\sqrt{\frac{100}{110 \cdot 35.9}-0.75}\right)^{2}}=20
$$

We need to check that the values of S_{4} and S_{5} are large enough to satisfy the maximum input common mode voltage. The maximum input common mode voltage of 2.5 requires

$$
S_{4}=S_{5} \geq \frac{2 I_{4}}{K_{P}^{\prime}\left[V_{D D^{-}} V_{i n}(\max)+V_{T 1}\right]^{2}}=\frac{2 \cdot 125 \mu \mathrm{~A}}{50 \times 10^{-6} \mu \mathrm{~A} / \mathrm{V}^{2}[0.7 \mathrm{~V}]^{2}}=10.2
$$

which is much less than 80 . In fact, with $S_{4}=S_{5}=80$, the maximum input common mode voltage is 3 V . Finally, S_{12}, is given as

$$
S_{12}=\frac{125}{100} S_{3}=25
$$

The power dissipation is found to be

$$
P_{\text {diss }}=5 \mathrm{~V}(125 \mu \mathrm{~A}+125 \mu \mathrm{~A}+125 \mu \mathrm{~A})=1.875 \mathrm{~mW}
$$

Example 3 - Continued

The small-signal voltage gain requires the following values to evaluate:

$$
\begin{aligned}
& S_{4}, S_{5}, S_{13}, S_{14}: \quad g_{m}=\sqrt{2 \cdot 125 \cdot 50 \cdot 80}=1000 \mu \mathrm{~S} \quad \text { and } g_{d s}=125 \times 10-6 \cdot 0.05=6.25 \mu \mathrm{~S} \\
& S_{6}, S_{7}: \quad g_{m}=\sqrt{2 \cdot 75 \cdot 50 \cdot 80}=774.6 \mu \mathrm{~S} \quad \text { and } g_{d s}=75 \times 10-6 \cdot 0.05=3.75 \mu \mathrm{~S} \\
& S_{8}, S_{9}, S_{10}, S_{11}: \quad g_{m}=\sqrt{2 \cdot 75 \cdot 110 \cdot 36.36}=774.6 \mu \mathrm{~S} \quad \text { and } g_{d s}=75 \times 10-6 \cdot 0.04=3 \mu \mathrm{~S} \\
& S_{1}, S_{2}: \quad g_{m I}=\sqrt{2 \cdot 50 \cdot 110 \cdot 35.9}=628 \mu \mathrm{~S} \quad \text { and } g_{d s}=50 \times 10-6(0.04)=2 \mu \mathrm{~S}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& R_{I I} \approx g_{m 9} r_{d s} 9 r_{d s 1}=(774.6 \mu \mathrm{~S})\left(\frac{1}{3 \mu \mathrm{~S}}\right)\left(\frac{1}{3 \mu \mathrm{~S}}\right)=86.07 \mathrm{M} \Omega \\
& R_{\text {out }} \approx 86.07 \mathrm{M} \Omega \|(774.6 \mu \mathrm{~S})\left(\frac{1}{3.75 \mu \mathrm{~S}}\right)\left(\frac{1}{2 \mu \mathrm{~S}+6.25 \mu \mathrm{~S}}\right)=19.40 \mathrm{M} \Omega \\
& k=\frac{R_{I I}\left(g_{d s 2}+g_{d s 4}\right)}{g_{m 7} r_{d s} 7}=\frac{86.07 \mathrm{M} \Omega(2 \mu \mathrm{~S}+6.25 \mu \mathrm{~S})(3.75 \mu \mathrm{~S})}{774.6 \mu \mathrm{~S}}=3.4375
\end{aligned}
$$

The small-signal, differential-input, voltage gain is

$$
A_{v d}=\left(\frac{2+k}{2+2 k}\right) g_{m I} R_{\text {out }}=\left(\frac{2+3.4375}{2+6.875}\right) 0.628 \times 10^{-3} \cdot 19.40 \times 106=7,464 \mathrm{~V} / \mathrm{V}
$$

The gain is larger than required by the specifications which should be okay.

Comments on Folded Cascode Op Amps

- Good PSRR
- Good ICMR
- Self compensated
- Can cascade an output stage to get extremely high gain with lower output resistance (use Miller compensation in this case)
- Need first stage gain for good noise performance
- Widely used in telecommunication circuits where large dynamic range is required

SUMMARY

- Cascode op amps offer an alternate architecture to the two-stage op amp
- The cascode op amp is typically self-compensating
- The cascode op amp generally has better PSRR

