MOSFET Transistors and Basic Circuits

Jennifer Hasler

CMOS Process Cross Section

MOSFET Device Physics

MOS Capacitor Behavior

Depletion: gate charge is terminated by charged ions in the depletion region

Ψ

Silicon-

Oxide (O)

Substrate

Polysilicon

Gate (M)

Silicon

 $\Delta \Psi = \kappa \Delta V_{g}$

Substrate (S)

Increasing Gate Voltage: Flatband (V_{fb}) \rightarrow Depletion \rightarrow Inversion

Inversion: further gate charge is terminated by carriers at the silicon--silicon-dioxide interface

MOSFET Operating Regions

Т

 $Q_s = e^{(\Psi - V_s)/U_T}$

Solution: transcendental equation (Simultaneous solution of Drift-Diffusion Equation)

$$\frac{\text{Depletion } (\kappa(V_g - V_{T0}) - V_s < 0)}{Q_s = e^{(\kappa(V_g - V_{T0}) - V_s)/U_T}}$$

	Below Threshold	Above Threshold	<u>Inversion (κ(V_g - V_T) - V_s > 0)</u>
Field Lines from gate charges	End on mobile charges in channel	End on mobile charges in channel	$Q_{s} = (\kappa(V_{g} - V_{T}) - V_{s})/U_{T}$
Charge boundary condition at source	Set by Fermi Distribution	$C_{ox}(\kappa(V_g-V_T)-V_s)$	$Q_{s} = \ln(1 + e^{(\kappa(V_{g} - V_{\tau 0}) - V_{s})/U_{\tau}})$ (EKV modeling)
Approximate surface potential	кV _g	ln(Q _s)	
Channel current flows	Diffusion	Drift	

Sub V_T Drain Current Derivation

$$n(x) = Ax + B$$

MOSFET Current-V Expressions

Current versus Drain Voltage

 $I_{ds} = I_{o} e^{AV_{g}/U_{T}} (\bar{e}^{V_{s}/U_{T}} - \bar{e}^{V_{d}/U_{T}}) I$ $= I_{o} e^{(AV_{g} - V_{s})/U_{T}} (V_{ds} > 4 U_{T})$ "Saturation"
Why is this not flat?
Effect is called the Early Effect
- first found in BJT devices (Jim Early)
- limits transistor gain $I_{d} = I_{d}(sat) (1 + (V_{d}/V_{A}))$ $V_{A} = U_{T}/\sigma = Early voltage = 1/\lambda$ $I_{d} = I_{d}(sat) e^{\sigma V d/UT}$

Origin of Drain Current Dependencies

Above-Threshold Derivation

Intuitive Above-Threshold Derivation

Drift Current: $I = \mu Q E$

$$Q = \frac{Q_{S} + Q_{D}}{2} \qquad \qquad E = \frac{Q_{S} - Q_{D}}{\varepsilon_{Si}}$$

Current is proportional to $(Q_s + Q_D)(Q_s - Q_D) =$

 \mathbf{q}_{s}^{2} - \mathbf{q}_{D}^{2}

Conduction band bends due to electrostatic force of the electrons moving through the channel

Band-diagram picture moving from subthreshold to above-threshold

$$Q_{s} = C_{T} (\kappa(V_{g} - V_{T}) - V_{s}), \qquad Q_{d} = C_{T} (\kappa(V_{g} - V_{T}) - V_{d})$$
$$I = (K/2\kappa) ((\kappa(V_{g} - V_{T}) - V_{s})^{2} - ((\kappa(V_{g} - V_{T}) - V_{d})^{2})$$

Above-Threshold Derivation

Current moves by Drift

$$Q(x) = C_{T} (\kappa(V_{g} - V_{T}) - \Psi(x))$$

$$I = \mu_{n} Q(x) E(x) = \mu_{n} Q(x) \frac{dV(x)}{dx}$$

$$C_{T} = C_{D} + C_{ox}$$
We know Q at Source and Drain edges of the channel

$$- \frac{dV(x)}{dx} = (1 / C_{T}) \frac{dQ(x)}{dx}$$

$$Q_{s} = C_{T} (\kappa(V_{g} - V_{T}) - V_{s}), \quad Q_{d} = C_{T} (\kappa(V_{g} - V_{T}) - V_{d})$$

$$(\kappa = C_{ox} / C_{T})$$

$$I = (\mu / C_{T}) Q(x) \frac{dQ(x)}{dx}$$

$$I = \frac{K}{2\kappa} \left(\underbrace{(\kappa(V_{g} - V_{T0}) - V_{s})^{2}}_{\propto Q_{s}^{2}} - \underbrace{(\kappa(V_{g} - V_{T0}) - V_{d})^{2}}_{\propto Q_{0}^{2}} \right)$$

$$I = (\mu / 2 C_{T}) (1 / L) (Q_{s}^{2} - Q_{d}^{2})$$

$$K = \mu C_{ox} (W/L)$$

Saturation: Above Threshold

 Q_D is positive, but by this simple model, could become negative.

- Where this model breaks down defines the saturation region for above threshold bias currents.
- When $Q_D = 0$, the MOSCAP at the drain at the boundary of depletion and inversion. Further increases in drain voltage push this MOSCAP at the drain into depletion.

$$I = \frac{K}{2\kappa} \left(\kappa (V_g - V_T) - V_S \right)^2$$
$$V_d = \kappa \left(V_g - V_T \right)$$

for sufficiently large V_{d} , $Q_{p} = 0$

Above Threshold MOSFET Equations

MOSFET Above V_T I Measurements

More Ohmic Region Data

$$I = (K/2\kappa) ((\kappa(V_g - V_T) - V_s)^2 - (\kappa(V_g - V_T) - V_d)^2)$$

Take the derivative of I with respect to $V_d (V_s = 0)$

dI / d $V_d = (K/2\kappa)(0 - (-2) (\kappa(V_g - V_T) - V_d))$ = $(K/2\kappa)(\kappa(V_g - V_T) - V_d)$

Above Threshold MOSFET Data

Channel Current vs. Gate Voltage

Compact EKV Model

EKV Model Extraction

Parameters	NMOS	PMOS
V _{T0} (V)	0.405	-0.620
K [°] (uA/V ²)	40.6 → 55	27.7
gamma	0.45	0.38
2φ _f	0.38	0.38

Theory, Simulation, and Data from 0.35um CMOS ICs

Effect of Velocity Saturation

Capacitance Modeling in a MOSFET

MOSFET Channel Capacitance

Source Follower (Sub V_T)

Common Source Amplifier

 $\Delta V_{out} = -\frac{\kappa}{\sigma} \Delta V_{in} + V_{const}$

