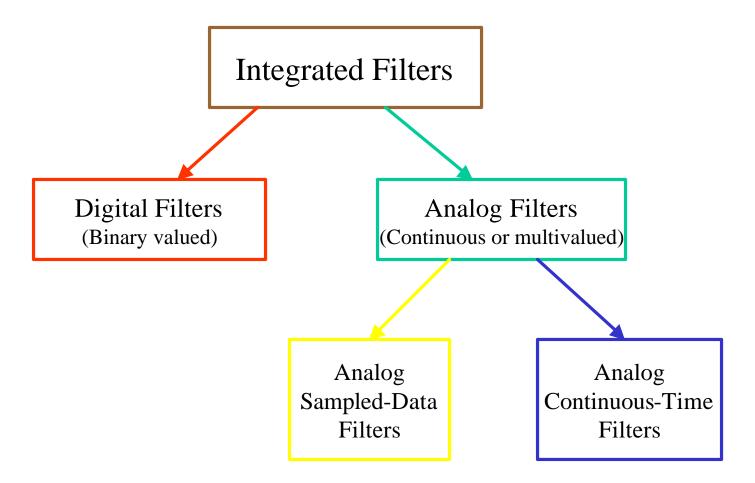
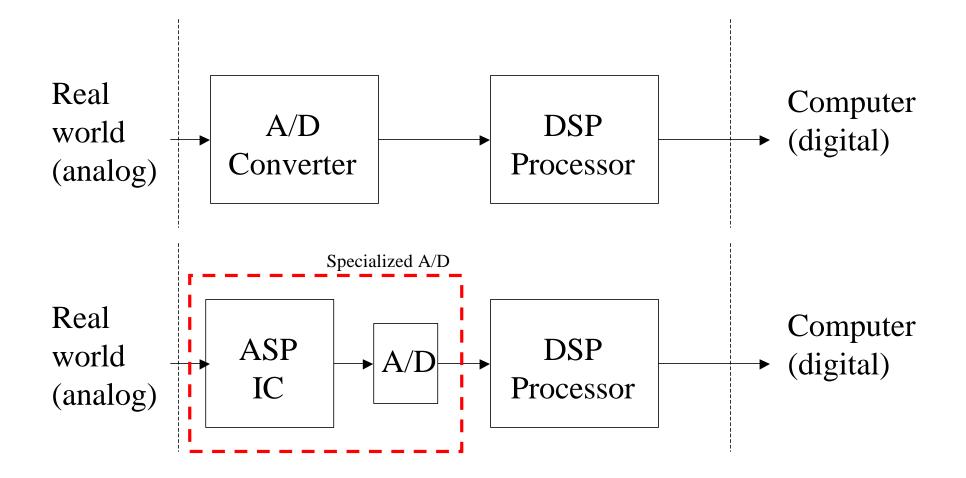
Signal Processing Design of Integrated Analog and Digital Filters Prof. Paul Hasler

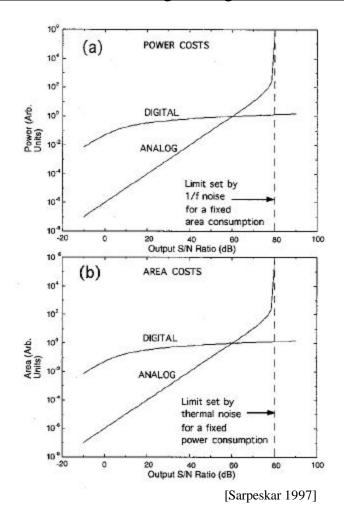


Where to divide Analog and Digital?

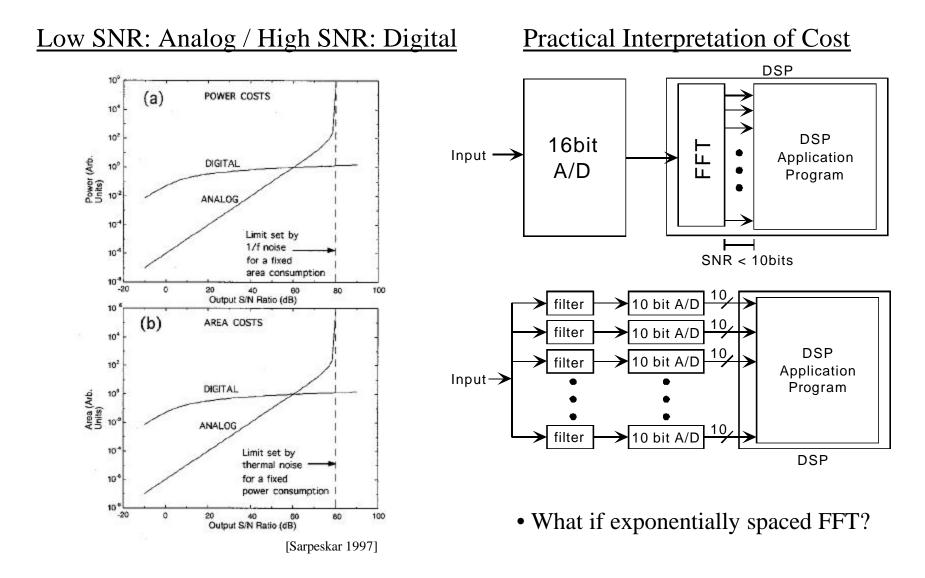


Analog-Digital Comparison

Low SNR: Analog / High SNR: Digital



Analog-Digital Comparison



Programmability / Tunability: flexibility and complexity

Available for digital (clocks/ crystals) as well as some analog (e.g. Floating-Gate) filters

Programmability / Tunability: flexibility and complexity

Available for digital (clocks/ crystals) as well as some analog (e.g. Floating-Gate) filters

High Signal-to-Noise Ratio (resolution):

Ratio of the largest signal and the smallest signal

Largest signal: Harmonic Distortion (continuous-time filters), Range limitations Smallest Signal: Noise

Programmability / Tunability: flexibility and complexity

Available for digital (clocks/ crystals) as well as some analog (e.g. Floating-Gate) filters

High Signal-to-Noise Ratio (resolution):

Ratio of the largest signal and the smallest signal

Largest signal: Harmonic Distortion (continuous-time filters), Range limitations Smallest Signal: Noise

Insensitivity to environmental fluctuations: Power-supply:Power Supply Rejection Ratio (**PSRR**) Temperature, etc.

Not a problem for digital filters, but can be the cause of several problems to other analog circuits

Programmability / Tunability: flexibility and complexity

Available for digital (clocks/ crystals) as well as some analog (e.g. Floating-Gate) filters

High Signal-to-Noise Ratio (resolution):

Ratio of the largest signal and the smallest signal

Largest signal: Harmonic Distortion (continuous-time filters), Range limitations Smallest Signal: Noise

Insensitivity to environmental fluctuations:

Power-supply:Power Supply Rejection Ratio (PSRR)

Temperature, etc.

Not a problem for digital filters, but can be the cause of several problems to other analog circuits

Typically, sampling in amplitude / time results in,

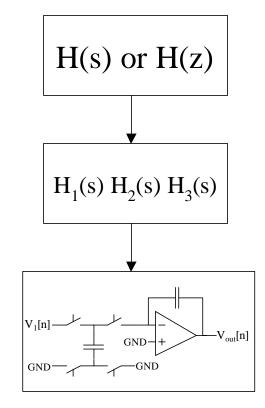
- the more complexity is needed (S/H blocks, anti-aliasing filters),
- more power / lower-frequency / area

Design of Analog Filters

- Find the transfer function for a given filter
- "Partition" the transfer function, or an approximation, into simple parts that can be implemented.
- Implement the transfer function in a particular circuit technology

Design of Analog Filters

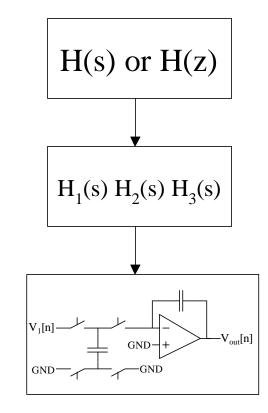
- Find the transfer function for a given filter
- "Partition" the transfer function, or an approximation, into simple parts that can be implemented.
- Implement the transfer function in a particular circuit technology

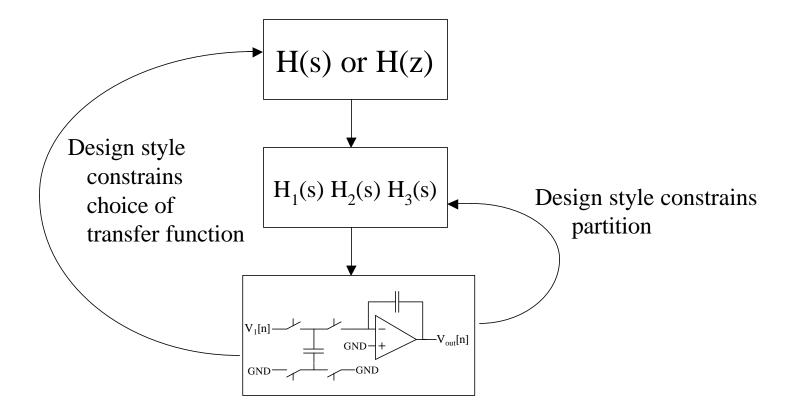


Design of Analog Filters

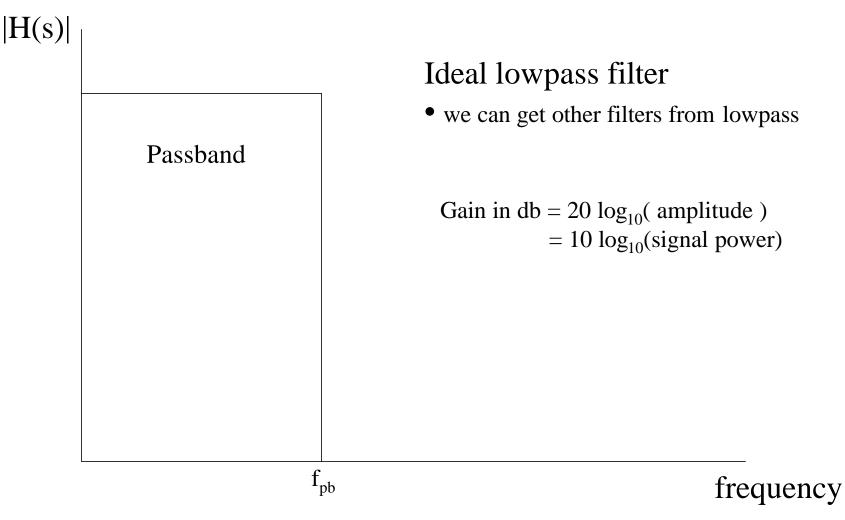
As basic building blocks we have

- integrators, delay elements
- first-order (low-pass / bandpass)
- second order functions (low-pass / bandpass / highpass)
- The "circuit" design question is how to make these functions what inputs / outputs / internal variables should be voltages / currents, etc.

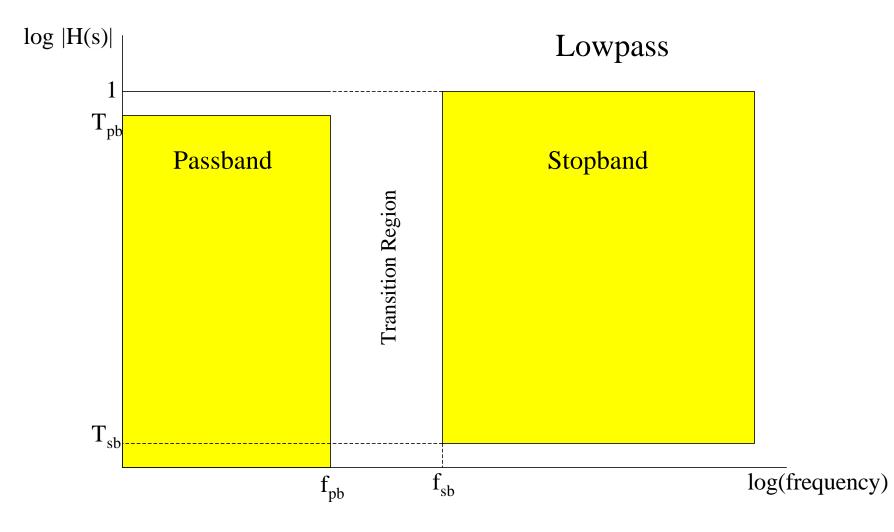




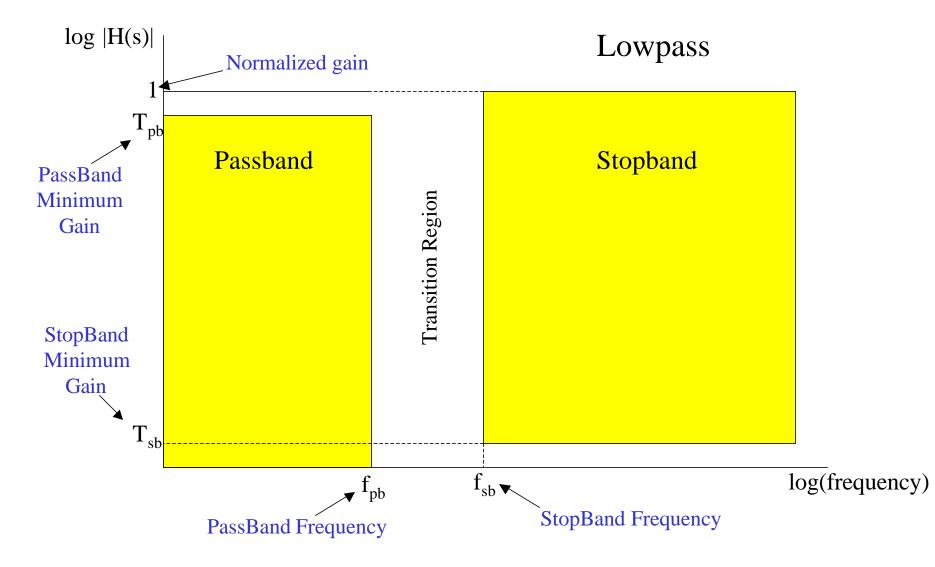
Choosing H(s) or H(z) for a filter



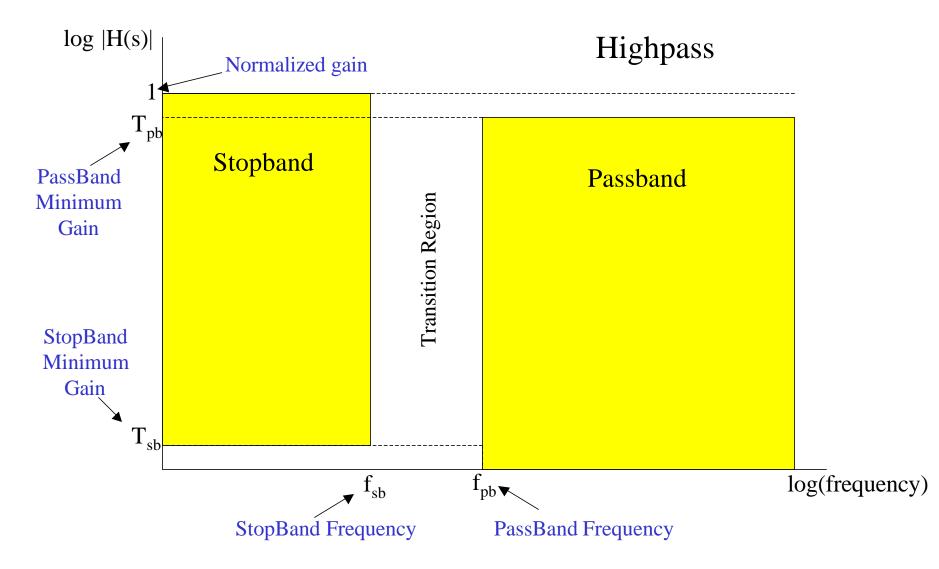
H(s) or H(z) for a lowpass filter



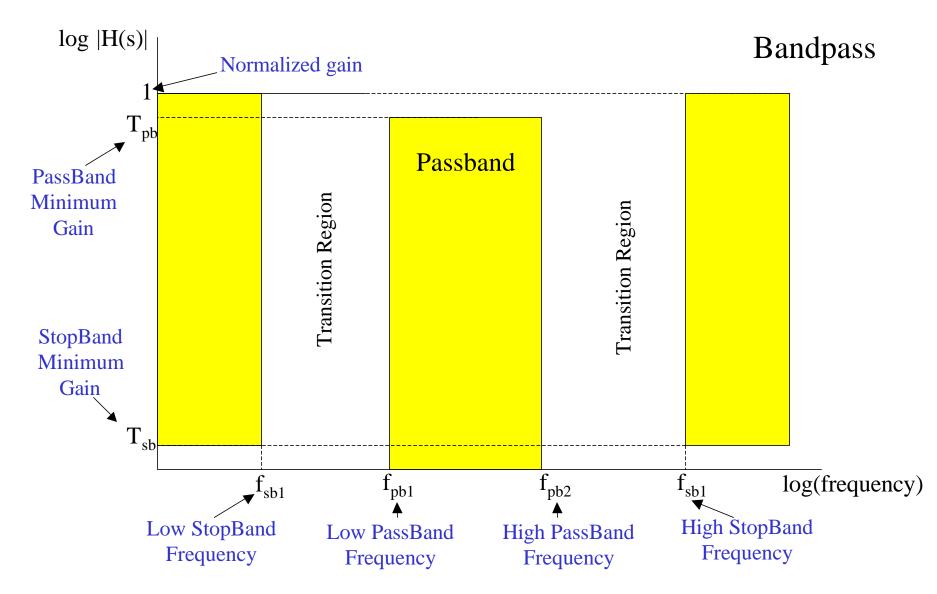
H(s) or H(z) for a lowpass filter



H(s) or H(z) for a Highpass filter



H(s) or H(z) for a Highpass filter



Four Canonical Cont-Time Filters

Classic Analog Filters (IIR digital filters):

Butterworth: Maximally flat in passband...moderate rolloff

- Chebyshev : Faster rolloff by allowing ripples in passband or stopband
- Elliptic: Fastest rollff by appowing ripples in both passband and stopband
- Bessel: Near linear phase, slow rolloff

Four Canonical Cont-Time Filters

Classic Analog Filters (IIR digital filters):

Butterworth: Maximally flat in passband...moderate rolloff

Chebyshev : Faster rolloff by allowing ripples in passband or stopband

Elliptic: Fastest rollff by appowing ripples in both passband and stopband

Bessel: Near linear phase, slow rolloff

Other FIR (digital) filters....

Other filter design (H(s) or H(z)) techniques: Optimization approaches

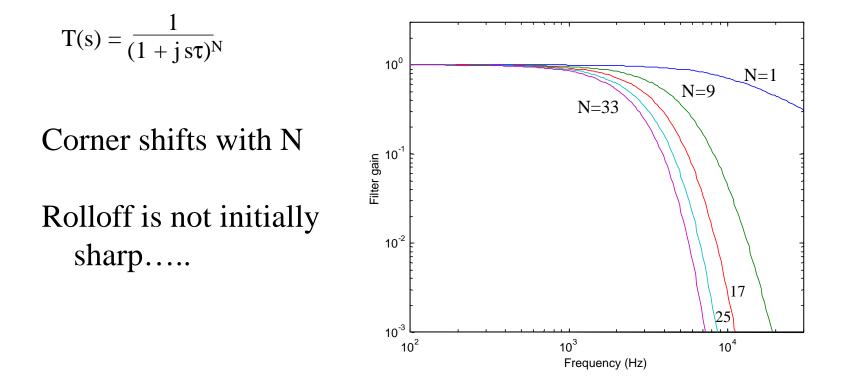
Should we choose H(s) or H(z) for our representation? Partially due to particular circuit tradeoffs

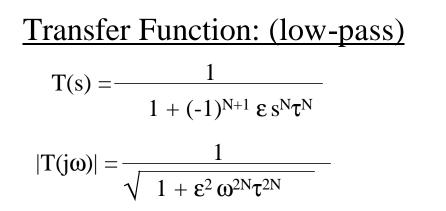
(tunability? tools? continuous tunability? Accuracy? power consumption?)

What happens if we just cascade first order stages?

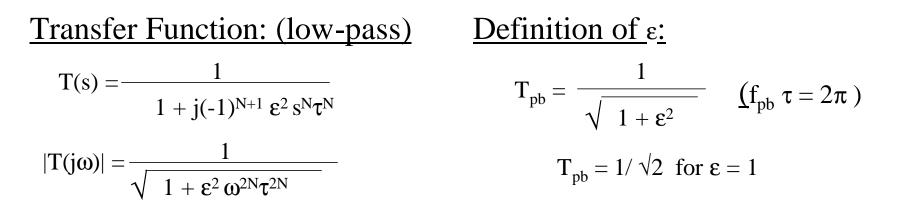
$$T(s) = \frac{1}{(1+j\,s\tau)^N}$$

What happens if we just cascade first order stages?





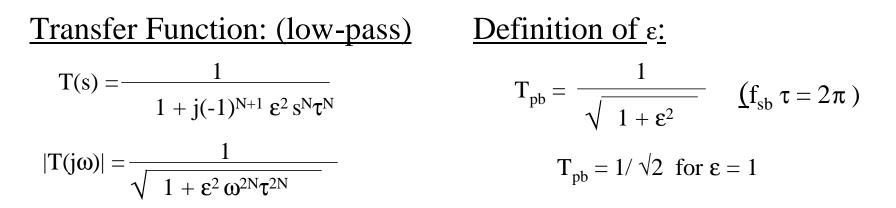
$$T_{pb} = \frac{1}{\sqrt{1 + \epsilon^2}} \quad (f_{sb} \tau = 2\pi)$$
$$T_{pb} = 1/\sqrt{2} \text{ for } \epsilon = 1$$



Need to solve to meet the specification of T_{sb} at f_{sb} : Filter Order (N)

 $T_{sb}^{2} (1 + \epsilon^{2} (f_{sb} / f_{pb})^{2N}) = 1$

To meet specifications, one chooses the next largest integer

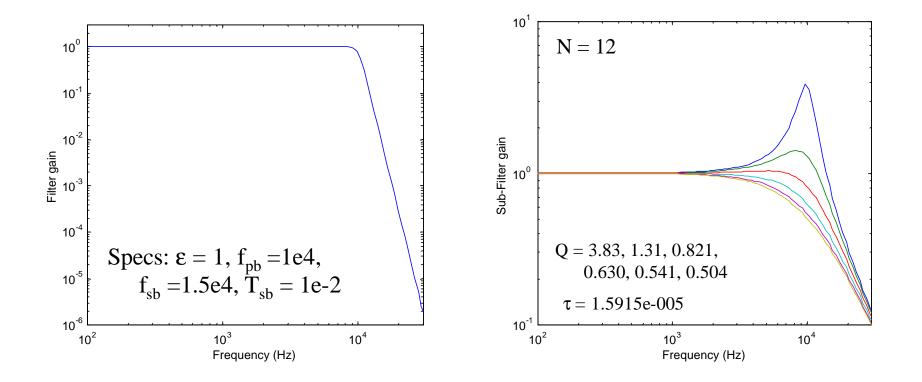


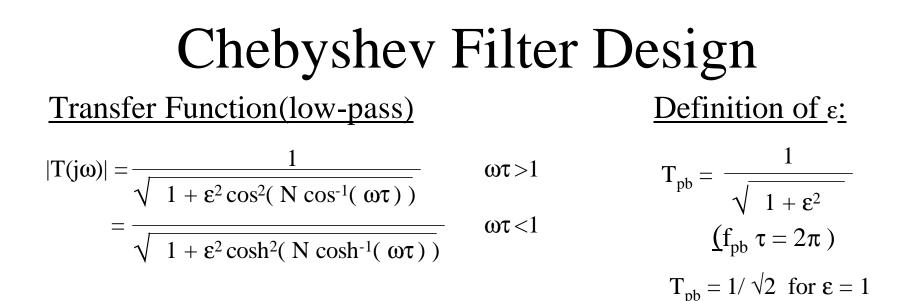
Need to solve to meet the specification of T_{sb} at f_{sb} : Filter Order (N)

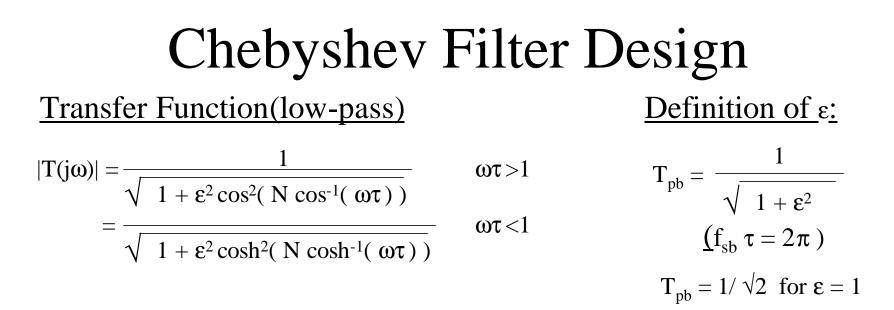
 $T_{sb}^{2} (1 + \epsilon^2 (f_{sb} / f_{pb})^{2N}) = 1$ To meet specific the net the net specific term of term of

To meet specifications, one chooses the next largest integer

 $\frac{\text{Pole locations: } (\epsilon = 1)}{1/\tau_{k}} = (1/\tau) (\sin((2k-1)\pi/(2N)) + j\cos((2k-1)\pi/(2N))), \ k=1...N$ $T(j\omega) = \frac{1}{(1 + s \tau_{1})(1 + s \tau_{2})...(1 + s \tau_{N})}$

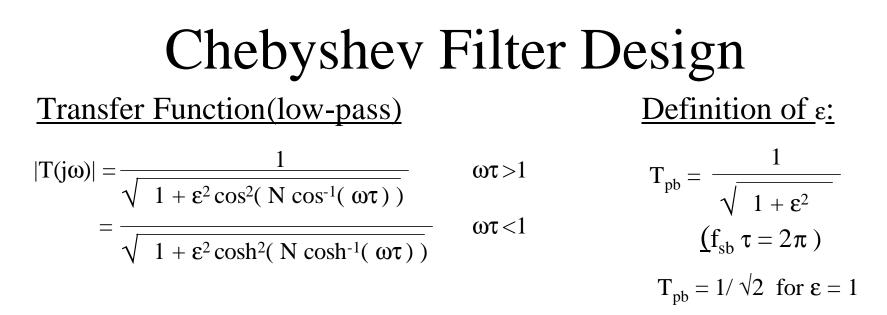






Need to solve to meet the specification of T_{sb} at f_{sb} : Filter Order (N)

 $(1 + \epsilon^2 \cosh^2(N \cosh^{-1}(f_{sb} / f_{pb}))) T_{sb} = 1$



Need to solve to meet the specification of T_{sb} at f_{sb} : Filter Order (N)

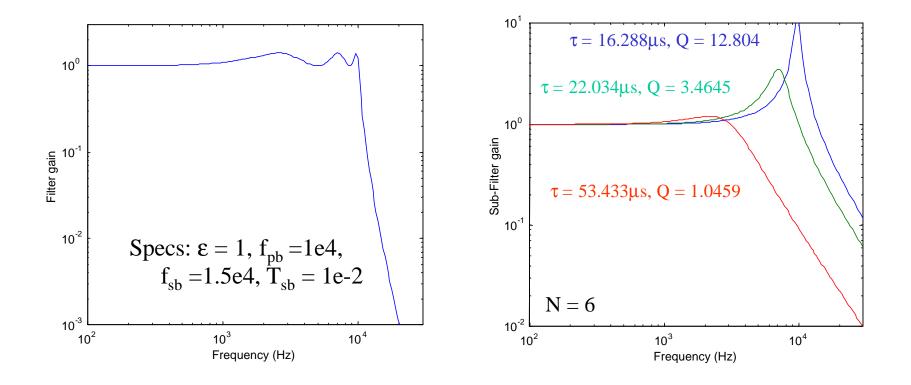
 $(1 + \epsilon^2 \cosh^2(N \cosh^{-1}(f_{sb} / f_{pb})))) T_{sb}^2 = 1$

Pole locations:

$$\begin{split} 1/\tau_{k} &= (1/\tau) \big(\sin((2k-1)\pi/(2N)) \sinh((1/N) \sinh^{-1}(1/\epsilon)) \\ &+ j \cos((2k-1)\pi/(2N)) \cosh((1/N) \sinh^{-1}(1/\epsilon)) \big) \end{split}$$

Where k goes from 1, 2,N

Chebyshev Filter Design



Fewer stages, higher Qs....

Transformations between s and z

Simple Transformation

$$z^{-1} = e^{-sT}$$

$$s \sim \frac{1}{T} (1 - z^{-1})$$

 $z^{-1} \sim 1 - sT$

T = sampling period

Transformations between s and z

Simple Transformation

$$s \sim \frac{1}{T} (1 - z^{-1})$$

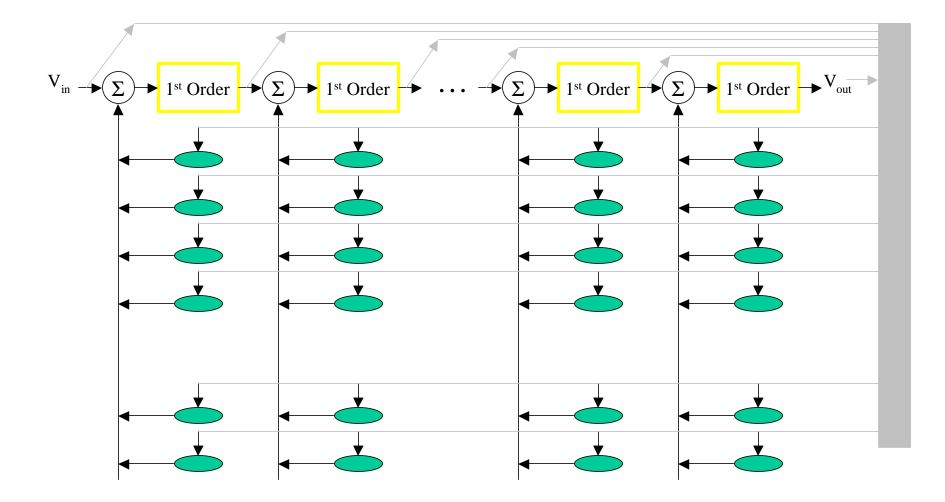
 $z^{-1} \sim 1 - sT$

T = sampling period

 $z^{-1} = e^{-sT}$

$$S \sim \frac{1}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \sim \frac{1}{T} \frac{1 - e^{-sT}}{1 + e^{-sT}}$$
$$Z^{-1} \sim \frac{1 - sT}{1 + sT} \sim \frac{1}{T} \frac{1 - (1 - sT + 0.5*(sT)^2 - ...)}{1 + 1 - sT + 0.5*(sT)^2 - ...} \sim S$$

General Filter Topology



General Filter Topology

N*N parameters

N poles, N zeros for N-th order filter

Problem is underspecified...therefore can optimize for SNR, complexity, etc...

Partitioning H(s) for Circuit Implementation

"Partition" the transfer function into simple parts

- Factorization into first order and second order terms
- Nearest neighbor feedback (~LC ladder filter network)
- Addition of factors (maybe out of an approximation of an FIR filter)
- Additional feedback / feedforward terms

Similar for either H(s) or H(z)

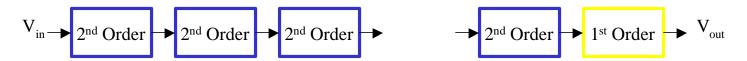
Typical Filter Topologies

Cascade of First and Second-Order Sections

$$V_{in} \rightarrow 2^{nd} \operatorname{Order} \rightarrow 2^{nd} \operatorname{Order} \rightarrow 2^{nd} \operatorname{Order} \rightarrow 2^{nd} \operatorname{Order} \rightarrow 1^{st} \operatorname{Order} \rightarrow V_{out}$$

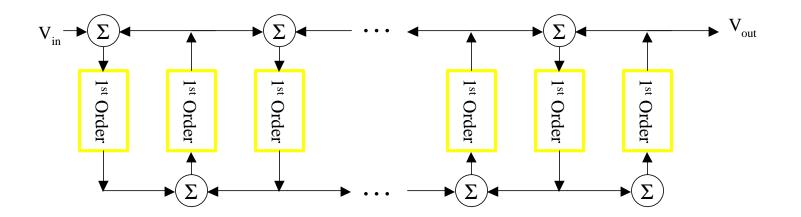
Typical Filter Topologies

Cascade of First and Second-Order Sections



Nearest Neighbor Feedback (Inspired by LC ladder network filters)

$$V_{in} \rightarrow \underbrace{\Sigma} \rightarrow 1^{st} \text{ Order} \rightarrow V_{out}$$



Conclusions

Basic directions for integrated circuit filters

- Continuous or Discrete: Time and/or Amplitude
- High level specifications of filters
- Obtaining a filter function (H(s) or H(z))
- Implementing the filter function into basic blocks

(first and second-order filter sections, integrators, delays, etc.)