Errata for Analog IC Design with Low-Dropout Regulators

Prof. Gabriel A. Rincón-Mora, Ph.D.

Chapter 2

Page 69: "...the MOSFET enjoys the benefit of true symmetric performance..."

Chapter 3

Equation 3.5: $\left.G_{M . L F}\right|_{\text {vout }}=0=\frac{i_{\text {out }}}{V_{\text {in }}} \approx \frac{\mathrm{V}_{\mathrm{gs}} g_{\mathrm{m}}-v_{\mathrm{R}} \mathrm{g}_{\mathrm{mb}}}{\mathrm{vgs}_{\mathrm{gs}}+\mathrm{v}_{\mathrm{R}}}=\frac{\mathrm{g}_{\mathrm{m}}}{1+\left(g_{\mathrm{m}}+\mathrm{g}_{\mathrm{mb}}\right) \mathrm{R}} \leq \mathrm{g}_{\mathrm{m}}$

Equation 3.6: $\left.G_{M . L F}\right|_{V_{\text {out }}=0}=\frac{i_{\text {out }}}{v_{\text {in }}} \approx \frac{v_{\pi} g_{m}}{v_{\pi}+v_{R}}=\frac{v_{\pi} g_{m}}{v_{\pi}+R\left[v_{\pi} g_{m}\left(1+\frac{1}{\beta}\right)\right]} \approx \frac{g_{m}}{1+R g_{m}} \leq g_{m}$
Equation on page 89: $\left(\mathrm{R} \| \frac{1}{\mathrm{sC}}\right)=\frac{\mathrm{R}}{1+\mathrm{sRC}}=\frac{\mathrm{R}}{1+\frac{\mathrm{s}}{2 \pi \mathrm{p}}}$

Equation 3.20:

$$
\begin{aligned}
\mathrm{G}_{\mathrm{M}} \approx \frac{\mathrm{~g}_{\mathrm{m}}}{1+\mathrm{g}_{\mathrm{m}}\left(\mathrm{R} \| \frac{1}{\mathrm{sC} C_{\text {PAR }}}\right)}=\frac{\mathrm{g}_{\mathrm{m}}}{1+\mathrm{g}_{\mathrm{m}}\left(\frac{\mathrm{R}}{1+\mathrm{sRC}_{\mathrm{PAR}}}\right)}= & \left.\frac{\mathrm{g}_{\mathrm{m}}\left(1+\mathrm{sRC}_{\text {PAR }}\right)}{\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}\right)\left[1+\frac{\mathrm{sRC}}{\text { PAR }}\right.}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}\right)\right]
\end{aligned}
$$

Figure 3.14:

Figure 3.22:

Equation 3.78:
Since $\mathrm{Q}_{\mathrm{IN}}-\mathrm{Q}_{\mathrm{O}}$ mirrors $\mathrm{i}_{\mathrm{gm.IN}}$,

$$
i_{\text {b.CO }}=\frac{i_{\text {gm.IN }}}{1+\beta} \quad \text { and } \quad R_{\text {IN }}=\left(\frac{1}{g_{\text {m.CIN }}}+\frac{1}{g_{m . \mathrm{M}}}\right)\left\|R_{\text {IN.CO }} \approx \frac{2}{g_{\mathrm{m}}}\right\|\left[\frac{2}{g_{\mathrm{m}}}(1+\beta)\right] \approx \frac{2}{g_{\mathrm{m}}}
$$

Equation 3.81:

$$
\begin{aligned}
& A_{\text {I.LF }} \equiv \frac{i_{\text {Load }}}{i_{s}}=\left(\frac{v_{\text {in }}}{i_{s}}\right)\left(\frac{v_{\text {b.M }}}{v_{\text {in }}}\right)\left(\frac{i_{\text {gm.M }}}{v_{b . M}}\right)\left(\frac{v_{\text {e.CO }}}{i_{\text {gm.M }}}\right)\left(\frac{i_{\text {gm.CO }}}{v_{\text {e.CO }}}\right)\left(\frac{v_{\text {out }}}{i_{\text {gm.CO }}}\right)\left(\frac{i_{\text {Load }}}{v_{\text {out }}}\right) \\
& =\left(R_{S} \| R_{\text {IN }}\right)\left[\frac{\left(\frac{1}{g_{m . M}}\right)}{R_{\text {IN }}}\right]\left(-g_{m . M}\right)\left[\frac{r_{\text {o.CO }}+R_{\text {Load }}}{1+g_{m . C O} r_{\text {o.CO }}} \|\left(r_{\pi . C O}+\frac{1}{g_{\text {m.M }}}+\frac{1}{g_{m . C I N}}\right)\right]\left(g_{\text {m.CO }}\right)\left(R_{\text {OUT }} \| R_{\text {Load }}\right)\left(\frac{1}{R_{\text {Load }}}\right) \\
& \approx\left(\mathrm{R}_{\mathrm{S}} \| \mathrm{R}_{\mathrm{IN}}\right)\left(\frac{1}{2}\right)\left(-\mathrm{g}_{\mathrm{m} . \mathrm{M}}\right)\left(\frac{1}{\mathrm{~g}_{\mathrm{m} . \mathrm{CO}}}\right)\left(\mathrm{g}_{\mathrm{m} . \mathrm{CO}}\right)\left(\frac{\mathrm{R}_{\text {OUT }} \| \mathrm{R}_{\text {Load }}}{\mathrm{R}_{\text {Load }}}\right) \\
& \approx\left(\frac{2}{\mathrm{~g}_{\mathrm{m} . \mathrm{M}}}\right)\left(\frac{1}{2}\right)\left(-\mathrm{g}_{\mathrm{m} . \mathrm{M}}\right)\left(\frac{1}{\mathrm{~g}_{\mathrm{m} . \mathrm{CO}}}\right)\left(\mathrm{g}_{\mathrm{m} . \mathrm{CO}}\right)(1) \approx-1
\end{aligned}
$$

Chapter 4

Figure 4.10:

* Unused terminal at $0, \mathbf{V}_{\text {Bias }}$, or \mathbf{v}^{\prime} (but not in the feedback path)

Page $153,2^{\text {nd }}$ paragraph, line 14 : "...to i_{O} (i.e., approximately g_{m}) and i_{O} to $V_{F B}$ (i.e., roughly R), respectively."

Equation 4.15: $A_{G . C L} \equiv \frac{\mathrm{io}_{\mathrm{O}}}{\mathrm{V}_{\mathrm{I}}}=\frac{\mathrm{A}_{\mathrm{G} . \mathrm{OL}}}{1+\mathrm{A}_{\mathrm{G} . \mathrm{OL}} \beta_{\mathrm{FB}}} \approx \frac{\mathrm{g}_{\mathrm{m}}}{1+\mathrm{g}_{\mathrm{m}} \mathrm{R}} \approx \frac{1}{\mathrm{R}}$

Figure 4.20:

(a)

(b)

Page 168, $2^{\text {nd }}$ paragraph, line 6: " \ldots where the output voltage is zero, which means i_{o} or $\mathrm{v}_{\mathrm{fb}} /\left(\mathrm{r}_{\pi} \| \mathrm{R}\right)$ is $\mathrm{v}_{\mathrm{e}} \mathrm{g}_{\mathrm{m}}\left(\mathrm{r}_{\pi}\|\mathrm{R}\| \mathrm{r}_{\mathrm{o}}\right) /\left(\mathrm{r}_{\pi} \| \mathrm{R}\right)$ or approximately g_{m}."

Page $168,3^{\text {rd }}$ paragraph, line 12: "...current gain $A_{I . O L}$ is i_{o} / i_{e}, where i_{o} is M_{C} 's gate voltage $\mathrm{VgC}^{\text {g }}$ (or approximately, $\mathrm{i}_{\mathrm{e}} \mathrm{r}_{\mathrm{o} 1} \mathrm{~A}_{\mathrm{V}}$) into source-degenerated transconductance $\mathrm{i}_{\mathrm{o}} / \mathrm{v}_{\mathrm{gc}}$:"

Equation 4.47:

$$
A_{I . O L}=\frac{i_{o}}{i_{e}}=\frac{-i_{e} r_{o 1}\left(-A_{V}\right)\left(\frac{i_{o}}{v_{g C}}\right)}{i_{e}}=r_{o 1}\left[g_{m A}\left(r_{d s A} \| r_{s d 3}\right)\left(\frac{g_{m C}}{1+g_{m C} r_{o 1}}\right) \approx g_{m A}\left(r_{d s A} \| r_{s d 3}\right)\right.
$$

Page $169,1^{\text {st }}$ paragraph, line $3:$ " \ldots or $r_{d s C} A_{V}$, where A_{V} is $g_{m A}\left(r_{d s A} \| r_{\text {sd }}\right): "$
Page 185, Active LHP Zeros, line 5: "...equivalent pole-zero pair $\mathrm{p}_{\mathrm{z}-\mathrm{p}}-\mathrm{Z}_{\mathrm{z}-\mathrm{p}}$ results because..."
Figure 4.24:

(a)

(b)

Page 186, paragraph 2, line 6: "...(i.e., $1 / 2 \pi R_{1} \mathrm{C}_{1}$) until the gain reaches the amplifier's maximum possible gain $\mathrm{A}_{\mathrm{v} . \mathrm{ol}}$, beyond which point the close-loop gain drops with $\mathrm{A}_{\mathrm{V} . \mathrm{ol}}$, as shown in Fig. 4.25b."

Figure 4.25:

(a)

(b)

Chapter 5:

Equation 5.13:

$$
\frac{\mathrm{f}_{\mathrm{odB}(\text { max }) \cdot \mathrm{PMOS}}}{\mathrm{f}_{\mathrm{OdB}(\text { min }) \cdot \mathrm{PMOS}}}=\left[\operatorname{GBW}_{(\text {max })}\left(\frac{\mathrm{p}_{\mathrm{B}(\text { max })}}{\mathrm{z}_{\mathrm{ESR}(\text { min })}}\right)\right]\left(\frac{1}{\mathrm{GBW}_{(\text {min })}}\right) \approx\left(\sqrt{\frac{\mathrm{L}_{\mathrm{L}(\text { max }}}{\mathrm{I}_{\mathrm{L}(\text { min })}}}\right)\left(\frac{\mathrm{C}_{\mathrm{O}(\text { max })}}{\mathrm{C}_{\mathrm{B}(\text { min })}{ }^{\prime}}\right)
$$

Equation 5.14:

$$
\frac{\mathrm{f}_{0 \mathrm{~dB}(\max) \cdot \mathrm{PNP}}}{\mathrm{f}_{0 \mathrm{~dB}(\min) \cdot \mathrm{PNP}}}=\left[\mathrm{GBW}_{(\max)}\left(\frac{\mathrm{p}_{\mathrm{B}(\text { max })}}{\mathrm{ZESR}(\min)}\right)\right]\left(\frac{1}{\mathrm{GBW}_{(\text {min })}}\right) \approx\left(\frac{\mathrm{I}_{\mathrm{L}(\text { max })}}{\mathrm{I}_{\mathrm{L}(\text { min })}}\right)\left(\frac{\mathrm{C}_{\mathrm{O}(\max)}}{\mathrm{C}_{\mathrm{B}(\text { min })}{ }^{\prime}}\right)
$$

Equation 5.18:

$$
\frac{\mathrm{f}_{0 \mathrm{~dB} \cdot \operatorname{Int}(\max)}}{\mathrm{f}_{0 \mathrm{~dB} \cdot \mathrm{Int}(\min)}}=\left[\frac{1}{\mathrm{GBW}_{\mathrm{Int}}}\left(\frac{\mathrm{GBW}_{\mathrm{Int}}}{\mathrm{p}_{\mathrm{O}(\text { min })}}\right)\right]\left[\mathrm{GBW}_{\mathrm{Int}}\left(\frac{\mathrm{p}_{\mathrm{B}(\text { max })}}{\mathrm{zESR}(\min)}\right)\right] \leq 10\left(\frac{\mathrm{C}_{\mathrm{O}(\text { max })}}{\mathrm{C}_{\mathrm{B}(\text { min })}+\mathrm{C}_{\mathrm{P}(\text { min })}+\mathrm{C}_{\mathrm{L}(\text { min })}}\right)
$$

Figure 5.10:

Chapter 6:
Equation 6.8:

$$
\mathrm{LG}_{+\mathrm{FB}} \approx \mathrm{G}_{+\mathrm{FB}} \mathrm{Z}_{\mathrm{O} . \mathrm{BUF}} \approx \frac{\frac{\mathrm{G}_{+\mathrm{FB}} \mathrm{R}_{\mathrm{O} . \mathrm{BUF}}}{\mathrm{LG}_{\mathrm{REG}}+1}}{\left(\frac{\mathrm{R}_{\mathrm{O} . \mathrm{BUF}} \mathrm{C}_{\mathrm{SW}} \mathrm{~s}}{\mathrm{LG}_{\mathrm{REG}}+1}+1\right)} \approx \frac{\frac{\mathrm{G}_{+\mathrm{FB}}}{\mathrm{~g}_{\mathrm{m} . \mathrm{BUF}}\left(\mathrm{LG}_{\mathrm{REG}}+1\right)}}{\left[\frac{\mathrm{C}_{\mathrm{SW}} \mathrm{~s}}{\mathrm{~g}_{\mathrm{m} . \mathrm{BUF}}\left(\mathrm{LG}_{\mathrm{REG}}+1\right)}+1\right]}<1
$$

Equation 6.9:

$$
\mathrm{LG}_{\mathrm{REG}} \approx \mathrm{~A}_{\mathrm{EA}} \mathrm{~A}_{\mathrm{PO}} \beta_{\mathrm{FB}}=\frac{\mathrm{A}_{\mathrm{EA}} \mathrm{~A}_{\mathrm{PO}} \mathrm{R}_{\mathrm{FB} 1}}{\mathrm{R}_{\mathrm{FB} 1}+\mathrm{R}_{\mathrm{FB} 2}}>\left.\mathrm{LG}_{+\mathrm{FB}}\right|_{\mathrm{LG}_{\mathrm{REG}}<1} \approx \frac{\frac{\mathrm{G}_{+\mathrm{FB}}}{\mathrm{~g}_{\mathrm{m} \cdot \mathrm{BUF}}}}{\left(\frac{\mathrm{C}_{\mathrm{SW}} \mathrm{~S}}{\mathrm{~g}_{\mathrm{m} \cdot \mathrm{BUF}}}+1\right)}
$$

Chapter 7:

Figure 7.2:

Appendix A

Derivation: Time Linear Regulators Require to Respond to a Sudden Load-current Step

A regulator, in essence, is a differential amplifier used in a non-inverting feedback configuration. As such, an equivalent gain block with a reference voltage as its non-inverting input can model its closed-loop response. Figure A. 1 illustrates the circuit and its model. The output of the regulator is loaded with a capacitor having a finite ESR value and a current sink characterized by transient load-current steps. Capacitor C_{O}, at first charged to $\mathrm{V}_{\text {OUT }}$, initially provides the current demanded by the transient load because the regulator requires some time to react. Voltage vout therefore instantaneously drops a voltage equal to the product of the load current and the ESR of C_{O}. Consequently, voltage v_{X} instantaneously drops an attenuated version of the same. This voltage change will be considered, for this derivation, the transient stimulus against which the circuit must react to maintain a regulated output voltage. For analysis, the stimulus is referred back to $\mathrm{V}_{\text {REF }}$ by simply inverting the polarity of the instantaneous voltage change. This procedure allows the circuit to be modeled, as shown in the figure, by a block having the closed-loop transfer function displayed from $V_{\text {REF }}$ to $V_{\text {OUT }}$ with a transient voltage step as its stimulus. In this manner, the response time (system delay) to a load-current change may be approximated.

Figure A.1. Block-model development of a typical linear regulator for estimating the time delay through the system.
For simplicity, the circuit is further assumed to exhibit a single-pole response. This assumption is reasonable if any secondary pole is sufficiently displaced from the system's dominant pole. As a result, the output is expressed as a function of input $\mathrm{V}_{\text {IN }}$ and time constant τ :

$$
\begin{equation*}
\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{IN}}\left(\frac{\mathrm{~A}}{1+\mathrm{A} \beta}\right) \approx \frac{\mathrm{V}_{\mathrm{IN}}}{\beta}\left(\frac{1}{s \tau+1}\right), \tag{A.1}
\end{equation*}
$$

where τ is $1 / \omega_{\mathrm{BW}}$, ω_{BW} the bandwidth in radians, A the forward open-loop gain of the regulator and β the feedback gain factor or $\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$. Figure A. 2 shows the time-dependent waveforms of the load current, the consequential input referred voltage, and the output. The input referred signal is further simplified to a single step response (v_{IN}). This approximation is done since only the delay associated with the instantaneous voltage change is pursued: approximate delay through the system for a single event. The peak-peak voltage of the step response, $1 / \mathrm{s}$ in the s domain, is assumed to be 1 V ; thus, vout is

$$
\begin{equation*}
\text { Vout }=\frac{1}{\mathrm{~s} \beta}\left(\frac{1}{\mathrm{~s} \tau+1}\right)=\frac{1}{\beta}\left[\frac{1}{\mathrm{~s}}-\left(\frac{\tau}{\mathrm{s} \tau+1}\right)\right]=\frac{1}{\beta}\left[\frac{1}{\mathrm{~s}}-\left(\frac{1}{\mathrm{~s}+\frac{1}{\tau}}\right)\right] \tag{A.2}
\end{equation*}
$$

in the s domain, or equivalently,

$$
\begin{equation*}
\text { Vout }=\frac{1}{\beta}\left[1-\exp \left(\frac{-t}{\tau}\right)\right] \tag{A.3}
\end{equation*}
$$

in the time domain, where t refers to time. Consequently, time delay $t_{\text {delay }}$ is the time span defined by the onset of the input transition to the time the output reaches 90% of its final value (i.e., $0.9 / \beta$),
or

$$
\begin{align*}
& \text { Vout }\left.\right|_{0} ^{\frac{0.9}{\beta} \mathrm{v}}=\left.\frac{1}{\beta}\left[1-\exp \left(\frac{-\mathrm{t}}{\tau}\right)\right]\right|_{0} ^{\mathrm{tgw} \mathrm{\%}} \tag{A.4}\\
& \mathrm{t}_{\text {delay }}=\mathrm{t}_{90 \%}=\tau \ln 10 \approx 2.3 \tau=\frac{2.3}{\omega_{\mathrm{BW}}} . \tag{A.5}
\end{align*}
$$

Consequently, the approximate time delay through the regulator is $2.3 / \omega_{\mathrm{BW}}$, or equivalently, $0.37 / \mathrm{f}_{\mathrm{BW}}$.

Figure A.2. Time-domain description of the system under a stepped load-current change.

