
 

Abstract— Harvesting ambient kinetic energy can power 
microsystems that cannot fit batteries large enough to sustain their 
operational life. Increasing the mechanical-to-electrical 
conversion efficiency of piezoelectric transducers (PZTs) is critical 
in this space. A good understanding of how PZTs react to motion 
and electrical loads is therefore necessary. This is especially true 
when ambient sources are irregular, which are more prevalent 
than the often-considered periodic vibrations, and for strongly 
coupled PZTs. This paper interprets and models PZTs with 
periodic and irregular sources and energy-harvesting loads. 
SPICE simulations show and compare the loads' effects on a 
strongly coupled PZT cantilever's motion. 
 

Index Terms— Piezoelectric Transducer, Electromechanical 
Model, Continuous/Impulse Source Vibration, Ambient Energy 
Harvesting, Damped Oscillations, Maximum Power Point 

I. PIEZOELECTRIC HARVESTERS 

Ambient energy harvesting is a low maintenance method for 
powering the ever-growing Internet-of-Things (IoT). Ambient 
kinetic energy harvesting (EH), specifically, is a good option 
for powering IoT microsystems since vibrations and motion are 
prevalent throughout society in mechanical, civil, and 
biomedical systems [1]–[5].  

A common method of motional EH is through piezoelectric 
transducers (PZTs), as shown in Fig. 1, because they effectively 
convert energy between the mechanical and electrical domains, 
have high energy densities, and are readily available off-the-
shelf [1], [4]. Motional inputs to the PZT, however, can come 
in different forms depending on the application. Much of the 
PZT EH state-of-the-art (SoA) focusses on constant sinusoidal 
vibrations as the PZT's input motion [1], [4], [5]–[12], but few 
consider the effects of other types of motion on PZTs. [2]–[4] 
propose impact based PZT energy harvesters but do not discuss 
the underlying theory as it pertains to PZT motion. Discussion 
on modeling PZT initial conditions is also scarce in the SoA.  
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Fig. 1. Piezoelectric harvesting system. 

Moreover, electrical loads significantly affect the mechanical 
motion of strongly coupled (SC) PZTs. Maximum power point 
(MPP) analysis for weakly coupled PZTs has been studied [10], 
[11], and [11] discusses resistive load MPPs for SC PZTs, but 
the effects other EH loads have on motion and MPP is lacking.  

This paper presents insightful analysis on the PZT equivalent 
circuit model in Section II and how various types of motion 
interact with this model in Section III.  Section IV uses SPICE 
simulations to analyze and compare the effects different EH 
loads have on SC PZT motion. Section V concludes the paper.   

II. ELECTROMECHANICAL MODEL 

Fig. 2 shows a simplified PZT equivalent circuit model with an 
electrical load to represent the energy transfers occurring during 
cantilever motion.  
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Fig. 2. PZT energy model. 

A mass has kinetic energy when in motion with velocity, v . 
Similarly, a capacitor has energy when a voltage develops 
across it. So, the transducer mass, M , in Fig. 2 can be modeled 
as a capacitor where C ≡ M  kg , and the mass's velocity, in 

, is equal to the capacitor voltage, v , as seen in (1).  

 E  0.5M v ≡ E 0.5C v  (1) 
A mass moves if force is applied to it and a capacitor 

develops a voltage if current is applied to it. Since v  represents 
both voltage and velocity, its time derivative can represent the 
transducer's acceleration, a , and since C ≡ M , the current, 
i , into C  is analogous to an applied mechanical force, f , as 

seen in (2), in units of kg  or N . 

 i C
dvT
dt ≡ M a f  (2) 

Springs store potential energy when compressed (or bent for 
a cantilever) a distance, d , from rest. Inductors store energy 
when magnetized by ϕ , so an inductor can model a spring with 

spring constant, K , where ≡ KT , as (3) shows. i  

represents force applied by the spring. 4  relates d  to i .  

 E  0.5K d ≡ E 0.5
1

LT
ϕ 0.5L i  (3) 

 d ≡ ϕ i L  (4) 
 Frictional sources, such as air resistance, burn energy and 
dampen mechanical motion in the same way resistors burn 
energy in electrical systems. Mechanical dampers, D , apply a 

force in response to motion, so ≡ DM  , as seen in (5). 

 D
fS
vT

≡ G
1

RM

iM
vT

 (5) 

R  models a resistive electrical load connected to the PZT. 
When the PZT oscillates at its resonance frequency, C  and L  
self-supply, negating their effects on the circuit, so the beam's 
motion is dominated by R 's and R 's equivalent resistance, 
R , as (6) shows: 

 v i R i R ||R  (6) 
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(7) shows that the losses due to mechanical damping are equal 
to the power dissipated by R . (8) shows that the losses due to 
the electrical load are equal to the power dissipated by R .  

 P ≡ G v
vT

2

RM
 (7) 

 P ≡ G v
vT

2

RE
 (8) 

Fig. 3 shows a full PZT mechanical-electrical model. The left 
side represents the mechanical domain discussed above. The 
right side represents the electrical domain where C  models 
the PZT's ability to store electrical energy and R  models 
leakage. A Norton equivalent circuit is preferred as R  is 
generally large. The transformer models the energy transfer 
between the mechanical and electrical domains. k  is the 
translation coefficient, representing conversion between 
force/velocity and current/voltage, and k  is the coupling 
coefficient, representing the fraction of energy captured and 
converted between domains [8], [14].  
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Fig. 3. Full PZT mechanical-electrical model. 

III. AMBIENT MOTION 

To effectively harvest energy from PZTs, it is important to 
understand how they behave with different types of input 
motion. Note that this section analyzes the motion of an 
unloaded PZT, so R  is open circuit.  

A. Vibrations 

Vibrations are perhaps the most researched input to PZTs and 
can be described as constant periodic oscillations [5]–[11], [14], 
[15]. Vibrations can be approximated as sinusoids as seen by f  
in Fig. 4. Considering Section II's discussion, a cantilever can 
be thought of as a resonant filter which suppresses all but the 
beam's resonant frequency. This is because when the applied 
vibration period, t , is equal to the transducer's resonant period, 
t , periodic oscillations feed the LC tank until C  and L  
exchange their energy without the help of i , therefore, self-
supplying. The vibrational energy is then burned by R , 
resulting in sustained oscillations as seen by v  and d  in Fig. 
4. At frequencies not near resonance, the energy will either be 
spent predominately on moving the spring, L , or the mass, C .  
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Fig. 4. Simulated response to resonant vibrations. 

B. Pulsations 

Pulsations are large magnitude motional inputs which occur 
over a very short time and can be idealized as a Dirac delta 
function, as seen by f  in Fig. 5. Pulses or impacts are common 
in society, from feet hitting the ground to a hammer strike or 
heartbeat. [2]–[4] take advantage of pulsations by proposing 
impact harvesters but few have discussed their implications on 
the PZT model.  

An impulse in time is a constant in frequency, so it contains 
all frequencies. When an input containing all frequencies is 
applied to a resonant filter, only the resonant frequency 
remains. So, when a pulsed force acts on the beam, it excites 
the beam into vibrating at its resonant frequency. The beam's 
vibration, however, is damped by R , so its oscillation will 
eventually decay to 0, as seen in Fig. 5. The time it takes for the 
beam's oscillation to reach 5% of its max is the damping time, 
t . Whether or not the oscillation actually decays to 0, though, 
depends on the source's pulse period, t . 
Slow Pulsations: Slow pulsations occur when t  > t , like Fig. 
5 shows. In these cases, the beam's motion can be described as 
periodic damped resonance as the vibrations will decay to 0 
before the next pulse occurs. 
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Fig. 5. Simulated response to slow pulsations. 

Fast Pulsations: If t  < t , fast pulsations occur. In these cases, 
the beam's motion never completely dies because the impacts 
supply it with energy packets, counteracting some of the 
damping that's occurred since the last pulse, as shown in Fig. 6.  
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Fig. 6. Simulated response to fast untuned pulsations. 

 Fig. 7 shows that fast pulses supply energy to the beam most 
effectively when tuned to one of t 's harmonics. The most 
energy is supplied when t  = t . 
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Fig. 7. Mechanical energy across applied pulse period. 



 

C. Initial Conditions 

Fig. 8 shows the two initial conditions which can occur for a 
cantilever [10]. Initial velocity, v ,  implies that the beam 
begins its motion with kinetic energy (KE), which can occur by 
flicking the beam. Initial displacement, d , implies that the 
beam begins its motion with potential energy (PE).  
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Fig. 8. Cantilevers when flicked and pressed with force. 

Rather than using i , the beam mass's v  can be modeled 
as an initial voltage across C , and is demonstrated in Fig. 9. 
Likewise, d  in a spring applies an initial reacting force, so it 
can be modeled with an initial current, i , in L , as modeled 
in Fig. 10. In both cases, the beam's motion is non-periodic 
damped resonance since the initial energy supplies the LC tank 
which then exchanges energy at t  with continuous loss to R .  
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Fig. 9. Simulated response to flicked cantilever. 
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Fig. 10. Simulated response to pressed cantilever. 

IV. ELECTRICAL LOADS 

A. Damping 

When R  is applied to a SC PZT with assumed k  = 1 and 
oscillating at t , R 's magnitude affects the beam's motion. 
When R  ≫ R , R  = R ||R   R . In this case, R  is 
negligible so it’s underdamping the system and mechanical 
damping dominates. This is in line with (4) since R  ≫ R  ≡ 
D  ≪ D . Since Req reaches a max, v 's peak also maximizes. 

R 's goal, though, is to extract power from the PZT by 
stealing current/force. While R  isn't reducing the beam's 
motion when underdamped (UD), it's also not burning much 
power. When R  ≪ R , R   R , so all force from the beam's 
motion is burned by R , but v 's peak is minimized, reducing 
motion and available power. This is the overdamped (OD) case.  
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Fig. 11. Electrical power across resistive loads. 

The sweet spot for vibration inputs occur when R  = R , or 
v  = 0.5v , because motional loses are balanced with P  
gains, as seen in Fig. 11. Half the source power, P , is delivered 
to R  when R  = R , which is the MPP. Note that this and the 
following MPPs are for P . Ultimately, P 's MPP is most 
important when harvesting energy, but that depends on k .  

B. Electrical Loads 

The OD's, UD's, and MPP's effects on motion for a SC PZT are 
considered for three types of EH loads. 
Resistive: Fig. 12 shows the effects a purely resistive load can 
have on the motion of a beam vibrating at t . When UD, R  has 
little effect on the beam's motion, so it oscillates as it would in 
the unloaded case seen in Fig. 4. At the MPP, R  = R , so the 
combined load doubles the mechanical damping resulting in a 
peak v  that is half of the uloaded case. If R  continues to 
decrease after the MPP, damping will increase until R  
effectively shorts the circuit, so all force from i  is lost to R  
and no oscillations or motion occur. 

v T
  [

m
m

/s
]

210

-210

420

-420

0

0 4 8 12 16 20
Time [ms]

tT
tS = tT

vT(OD)

vT(MAX) = 360 mm/s
0.5vT(MAX) = 
180 mm/s

vT(MPP)

 
Fig. 12. Simulated response to vibrations with resistive loads. 

Synchronized Discharges: Synchronized discharges (SD) occur 
in switched inductor energy harvesters, which are commonly 
used in the SoA [6], [8]–[13]. These systems extract packets of 
PE stored within the spring/inductor when d  peaks [10]. The 
damping cases depend on the size of the PE packets extracted 
relative to the total PE that was present, PE .  
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Fig. 13. Simulated responses to vibrations with synced discharges. 

The UD extreme occurs when the PE  is very small, so 
essentially no PE is taken and motion, again, looks the same as 
in Fig 4. When PE  is too big, the beam's oscillation strength 
reduces, resulting in motional losses and less available power. 
This is the OD case. Since PE is extracted when d  peaks, small 
oscillations exist even at the OD extreme, so motion can't be 
completely killed with SD. 

When PE  0.5, or d
√

 , motional losses 

are balanced with P   gains, so the MPP is achieved. Here, SD 
loads burns approximately the energy stored across a half cycle 
that resistive loads would have burned during the half cycle. So, 



 

the SD MPP also occurs when PE  reduces v  to about 
0.5v , as seen in Fig. 13. 
Rectified: Many SoA PZT energy harvesters utilize rectifiers 
[1], [7], [10], [13]. Rectified loads harvests energy from PZTs 
by channeling a portion of the KE, v , at a certain i , i , to 
the output, as seen in Fig. 14 [10]. The higher i , the more 
energy that can be harvested with v , but more v  is required to 
energize L  to i , so less v  is available for harvesting.   
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Fig. 14. Simulated response to vibrations with rectified load. 

The damping cases depend on i . When UD, i  is so 
high that i  never reaches it, so C  and L  exchange energy 
freely, maximizing motion as seen in Fig. 4. When i  is 
small, L  doesn't need much energizing and a lot of v  is 
channeled to the load, but the strength at which v  is harvested 
is low. Plus, with L  capped at a low i , the LC tank is 
destroyed and motional loses increase, so the system is OD. i  
receiving energy as i  drops manifests as a phase shift, PS. 

The MPP occurs when i  gains are balanced with the 
tradeoff between P  gains and motional losses associated with 
capturing more v . The rectifier's MPP is not at 0.5v , 
unlike for SD and resistive loads.  
Comparison: Fig. 15 compares the energy captured by each 
type of load across v . 1 – PE  is the relative PE kept in LT.  
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Fig. 15. MPP comparison between electrical loads. 

SD and R loads are the most effective options when 
designing harvesters for SC PZTs since E  is maximized. 
E  is lower because the energy required to energize L  
to i  is never accessible by the harvester. Note that E  
occurs at a higher v . Note also, that all of the loads converge 
to a similar UD condition, but respond differently in the OD 
cases, as was explained above.   

V. CONCLUSIONS 

This paper presented an insightful analysis of the PZT 
electromechanical model by using a basic understanding of 
energy transfers and elementary equations. This model was then 

used to describe and simulate a cantilever style PZT's unloaded 
response to common motional inputs. Fast pulses always avail 
more energy than slow pulses but are most effective when tuned 
to a PZT harmonic. An initial i  in L  models initially bent 
PZTs while an initial v  across C  models initially moving 
PZTs. SPICE simulations showed that resistive and SD loads 
can draw the most energy from SC PZTs. While all loads 
respond the same when UD, SD loads have a motional loss limit 
while rectifiers have the largest motional losses when OD. 
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