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Salvaging Gate-Drive Power in 
Switched Power Supplies 

Abstract— Due to the increasing use of electronic devices in our 
everyday lives, ranging from automotive to home automation and 
portable devices, the demand for effective power management 
systems has become more pressing. Switched-mode power supplies 
are highly popular because they offer high power efficiency over a 
wide load range. However, these power supplies lose gate charge 
energy due to parasitic gate capacitances. Therefore, recovering 
this energy could lead to higher power efficiency. This paper 
explores two methods of salvaging part of the gate energy by using 
an additional on-chip bond wire inductor and discusses their 
impact. The simulated results demonstrate that salvaging up to 
50% of the energy stored in gate capacitances is possible, which 
translates to a loss saving of up to 50% of the total loss occurring 
in a power supply.  

Keywords— Switched-mode power supplies, DC–DC, bond wire 
inductor, gate charge loss, loss recycling 

I. GATE-DRIVE LOSSES IN SWITCHED POWER SUPPLIES 

rom automotive applications to personal consumer 
electronics, IoT devices, home automation, etc. Electronic 
devices are increasingly important in our daily lives. Low-

loss systems are always desirable, and since power supplies are 
the first source of losses in electronic systems, designing 
efficient power supplies is critical [1]. This is particularly true 
for portable applications, where devices are powered by a 
battery. 

Switched-mode power supplies are popular among power 
supplies because of their high efficiency across a wide load 
range. A typical electronic system can consist of a charger and 
a voltage regulator that supply a load, as Fig. 1 shows. The 
charger and/or regulator can be implemented as switched-mode 
power supplies. Switched-mode power supplies switch (at a 
switching frequency, fSW) between two or more states using 
switches that periodically connect and disconnect parts of the 
system. 
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Fig. 1. Electronic system with charger, voltage regulator, and load. 

Fig. 2 illustrates a CMOS switch implementation, which can 
be either an NMOS or a PMOS that a driver drives. The 
switches can carry high currents, causing MOS devices to be 
relatively large and result in a significant parasitic capacitance, 
CG, at their gate. Whenever a switch turns on (or off), the supply 
must charge its gate capacitance to vDD [2]. Only half of the 
total power that the driver burns, ED, goes toward charging CG. 
The gate charge qG stored in CG is then usually discharged to 

ground, resulting in a net loss ED. Thus, recovering, at least 
partially, this gate energy, EG, would result in an overall 
reduction in power loss. 
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Fig. 2. CMOS switches: NMOS (left), PMOS (right). 

The vast of majority of designers simply accept this loss. The 
State of the Art have partially implemented techniques to 
salvage gate energy. [3] implements an on-chip synchronous 
salvaging technique, but they drain CG into a temporary tank 
capacitance by the mean of switches, which always burn half of 
EG. This yields to a maximum salvaging rate of 25% of EG. 
Similarly, [4] implements a synchronous RC transfer to the 
output capacitor to salvage up to 25% of ED. 

On the other hand, [5–14] implement a resonant gate driver, 
achieving to salvage up to 73% of ED [5]. However, they use an 
external discrete inductor, and the resonant process requires 
precise timing, adding extra complexity on the driver control. 
[15] performs a resonant LC transfer by the mean of an on-chip 
inductor. However, they require an extra storage capacitor, and 
the synchronous transfer must be precisely timed. 

This paper offers 2 ways of salvaging gate energy with an 
on-chip bond wire inductance and an asynchronous transfer, 
avoiding any difficult timing control. Section II presents the 
salvaging circuit. Section III describes the 2 techniques in detail. 
Section IV discuss the 2 techniques and their limitations, and 
Section V concludes this paper. 

II. SALVAGING CIRCUIT 

A. Operations 

In contrast to RC transfer, LC energy transfer is lossless. Fig. 3 
below shows the salvaging circuit. It relies on a bond wire 
inductor to salvage the energy contained in the gate CG of a 
switch. The pull-up and pull-down transistor on the left are part 
of the driver. The gate of a switch connects to the node vG. 

The closure of the switch SSW initiates the draining of CG. 
DSW prevents any current from flowing back to CG. The current 
flows to a capacitor CSO connected at the output, vSO, of the 
salvaging circuit. Section III gives more details about the nature 
of CSO. If CG drains completely before LBW finishes de-
energizing, DDG allows the current to flow. 

Initially, CG has been charged to vDD by the pull-up transistor 
(corresponding to an NMOS switch being on or a PMOS switch 
being off), therefore carrying an initial amount of energy, EI: 
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Fig. 3. Salvaging circuit. 

If SSW and DSW/DG allow the system to be asynchronous, they 
unfortunately contribute to degrading the efficiency of the 
transfer. The amount of energy ESO transferred to CSO is EI 
minus what the switch and the diodes have burned, ELOSS(TR): 

 E E   E . (3) 

Equation (4) defines the savings efficiency, SE, of the transfer: 

 S  . (4) 

B. CMOS Implementation 

Fig. 4 below depicts the CMOS implementation of the 
salvaging circuit. The switch is implemented with a 
transmission gate (PMOS and NMOS in parallel), where the 2 
FETs are sized to balance their ohmic loss due to their channel 
resistance with their own gate drive loss. DDG is implemented 
with a regular PN junction. DSW is implemented with a 
MOSFET, MDSW. Its gate is connected to vG, allowing for a 
larger overdrive to reduce the voltage dropped across it thanks 
to RG that slows down its fall. 
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Fig. 4. Resistive gate diode. 

The switch TSW offers some resistance, RSW, to current, and 
diodes (MDSW or DDG) drop a voltage when conducting current. 
The parasitic resistance of LBW is negligible compared to the 
switch resistance. Those elements are responsible for the 2 
losses degrading transfer efficiency, ESW and ED: 

 E E E E v Q . (5) 

The loss occurring in a diode is simply the product of the 
diode voltage, vD, and the charge, QD, flowing through it. The 
current flowing from CG to CSO through LBW is a LC sinusoidal 
transfer. It peaks when all the initial amount of energy available 
in the equivalent capacitance, CEQ, (the sum in series of CG and 
CSO), is transferred to LBW. The current then reaches iL(PK). The 
initial energizing voltage applied across LBW is vDD minus vSO: 

 E R i R
√
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√

π L C . (6) 

It takes about half the LC period, tLC, for the energy to transfer 
from CG to CSO. 

For the system to be integrated, an on-chip inductor needs to 
be used. On-chip inductors come in 2 main types: bond wires, 
and monolithic metal traces, and are in the nano Henries range, 

up to 10 nano Henries usually [16–22]. For this application, a 
lead frame bond wire inductor was chosen due to the low 
inductance required and insensitivity to inductance variation 
[18]. Simulations are performed with a 5 nano Henries inductor. 

Fig. 5 depicts how such an inductor can be implemented 
using 4 bond wires to benefit from coupling. The 2 upper wires 
are close from each other and see a current flowing in the same 
direction. They therefore see a positive mutual coefficient that 
reinforce the inductance, noted M+ in Fig. 5. The same 
principle applies to the 2 lower bond wires. Separating the two 
sets of wires helps to reduce the negative coupling coefficient, 
noted M-, as discussed in literature [23–27]. 

Any parasitic capacitance, such as pad capacitance, will 
negatively impact SE, as they will steal energy away from CSO. 
However, if they are small enough in front of CG, their effect 
can be neglected. 
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Fig. 5. Bond wire inductor design. 

III. SALVAGING STRATEGIES 

A. Recover Gate Energy 

This section introduces the first technique for salvaging gate-
drive energy: recovery. As depicted in Fig. 6, the salvaging 
circuit connects to the output of the power supply. CSO is 
therefore the output capacitance, CO, of a switched-mode power 
supply. Therefore, each switch in the power supply can have its 
own recovery circuit implemented. 
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Fig. 6. Salvaging circuit connects to the output capacitor of the power supply. 

In order to present an insightful analysis of the design and 
limitation of this system, the only loss considered in the theory 
is a diode loss. In this configuration, the initial voltage across 
CO is the output voltage vO of the power supply. Because CO is 
significantly larger than CG, vO is considered constant. For CG 
to drain completely, the initial energizing voltage across the 
inductor should be larger than half the initial voltage across CG. 
This condition gives an upper limit value for vO: 

  v v   . (7) 

If (7) is not met, CG will not drain fully, and when the transfer 
is over, voltage across CG is vG(∞). Equation (8) expresses the 
conservation of energy during the transfer. On the total amount 
of energy transferred from CG, some has been burned in DSW, 
and the remaining has reached vO: 

 v v v v v v . (8) 



Solving (8) for vG(∞) reveals the amount of energy, EO1, 
recovered in CO: 

 E C v 2v 2 v v  , (9) 

And the optimal output voltage, vO', that yields the highest EO1: 

 v   . (10) 

A lower vO results to in less energy recovered because energy 
held in a capacitor scales quadratically with the voltage across 
it. Equation (11) consequently expresses the savings efficiency, 
SE, which simplifies to (12) in the ideal case of a zero vD: 

 S 4 v v v . (11) 

 S 4 1 . (12) 

If (7) is met, CG drains fully. When vG reaches 0, LBW remains 
energized and holds E . E  is EG minus what has been 

recovered by vO until vG reaches 0 (E ), minus what has been 
lost in DSW (ED). Part of E will reach vO, and the remaining 
will be lost in DDG (ED(DG)). Equation (13) thus expresses the 
amount of energy recovered in CO, EO2: 

EO2 = E E E  

     = v q + v v q v q – vDCG – v – v  

       = .  (13) 

When vD is 0, (13) simplifies to EI, so SE becomes 100% in the 
ideal case. Otherwise, the transfer efficiency is: 

 S    . (14) 

Fig. 7 below depicts transfer efficiency as a function of the 
ratio of vO over vDD, when vD is zero. As long as (7) is verified, 
SE is 100%. When (7) no longer holds (which corresponds to a 
ratio vO over vDD of 50%), the savings efficiency starts to drop. 

20 40 60 80 100
20
60

100

S E
 [

%
]

vO/vDD [%]

vD = 0 V

30 50 70 90
 

Fig. 7. Percentage of EG recovered (ideal transfer). 

For a non-ideal case, Fig. 8 shows transfer efficiency across 
vO for different vDD. Each transfer efficiency peaks when (7) is 
met for that given vDD, and reaches up to 70%. 
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Fig. 8. Percentage of EG recovered across vO for a vDD of 2.5 V, 3.3 V, 5 V. 

The theoretical plots in Fig. 8 are plot with only 1 lossy 
element, a diode dropping a constant voltage. Circuit in Fig. 4 
is simulated with level 1 SPICE MOSFET model. MPSW and 
MNSW are 4 mm wide, MDSW is 60 mm wide, and RG is 12 Ω. 
Unlike the theory, simulations include a resistive ohmic loss, 
ESW, which is the loss which mainly degrades SE. Thanks to RG, 
MDSW only drops a small voltage. 

It is worth noting that when sizing down the size of the 
switch, SE drops, as Fig. 9 shows. This is because the size of 
MNSW and MPSW must scale down with CG. They will then 
become increasingly more resistive (as resistance is inversely 
proportional to width). Because of voltage breakdown for high 
voltage applications, power supplies are usually designed with 
a large technology node, that can lead to a gate capacitance of 
hundreds of pico-farads [28]. 
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Fig. 9. Simulated savings efficiency across CG. 

B. Recycle Gate Energy 

This section presents a second way to salvage EG. In this 
scenario, CSO is the gate capacitance of another switch in the 
system. Those 2 switches need to work in a complimentary 
fashion, one gate being discharged when the other needs to be 
charged. Fig. 10 shows a representation of this implementation 
with a PMOS and an NMOS switch. The energy from each 
FET's gate capacitance is recycled to the other gate capacitance. 

vDD EG(N)

vO

CO

40 µF

Salvaging 
circuit

vU(N) 
vD(N) 

vGN

EO(N)

EG(P)
Salvaging 

circuit
vU(P) 
vD(P) 

vDD 

EO(P)

vGP

100 mm
300 nm

100 mm
300 nm

 
Fig. 10. Salvaging circuit connects to the gate of another switch. 

Unlike recovery, there is no initial voltage across CSO. 
Assuming a transfer from CGN to CGP, the transfer is governed 
by the conservation of charges and energy. If CGN does not drain 
completely, then vGN will be at vGN(∞) when the transfer is over, 
and vGP at vGP(∞). Equation (15) sets the condition for CGN to 
drain completely: 

 C C 1 . (15) 

Solving (16) and (17) for vGN(∞) and vGP(∞) allow to find the 
transfer efficiency SE, which simplifies to (19) when vD is 0.  

C v v v .  (16) 

 C v v C v . (17) 

 S 4 1   . (18) 

 S 4 . (19) 

When the transfer is complete ((15) is met), LBW is still 
energized with EL(0) when vGN reaches 0. Applying a reasoning 
similar to (13), solving (20) for vGP(∞) allows to find SE; no 
simple expression for SE exists in this case. 

EL(0) = v C v . (20) 

Fig. 11 illustrates SE across vDD for the recycling technique. 
The theoretical plots were generated with only 1 lossy element, 
a diode that drops a constant voltage vD. Simulated SE 



ultimately flattens because both EI and ESW scale quadratically 
with vDD. MPSW and MNSW are 4 mm wide, MDSW is 10 mm wide, 
and RG is 47 Ω. 

10
30
50
70

   
S E

 [
%

]

1.0 2.0 3.0 4.01.5 2.5 3.5 4.5 5.0

Theory                  SPICE Sim.

vDD [V]  
Fig. 11. Percentage of EG recycled across vDD. 

IV. CONTEXT 

A. Salvaging Strategies 

The main difference between recovery and recycling lies in the 
nature of CSO. For recovery, CSO is the output capacitor of the 
power supply. It can also be a battery for instance. The 
distinctions with recycling are that CO is significantly larger 
than CG, and it can carry an initial voltage across it when the 
transfer starts. On the other hand, CSO in the recycling technique 
is another gate capacitance, so it is roughly the same size as CG, 
and it is initially discharged. 

A characteristic of RC energy transfer is that the switch will 
always burn as much energy as the capacitance receives. This 
is a fundamental limitation of the recovery technique. In this 
case, the gate capacitance is charged to vDD thanks to a regular 
driver, so a full EG has already been burned in the driver and 
cannot be salvaged at all. Recovering 70% of EG leads to a net 
saving of 35% of the total loss ED. 
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Fig. 12. Spice simulations of savings fraction of driver energy across vDD. 

On the other hand, with the recycling technique, EG is 
directly recycled to another gate via a lossless LC transfer, with 
no additional driver loss. Savings with recycling are twice as 
much compared to recovery, as Fig. 12 shows. A 50% recycling 
rate yields a net saving of 50% on ED. However, recycling needs 
to be implemented on 2 complementary switches. It can be 2 
NMOS, but their respective gates need to be controlled with a 
180° phase shift. 

B. Output Power 

When implemented, those gate energy techniques can allow for 
some energy savings on the total energy, ELOSS, lost in the 
power supply. Equation (21) defines the fractional weight of the 
savings compared to the total amount of loss in the power stage. 

 σ  . (21) 

For example, in a switched-inductor converter, losses may be 
modeled according to (22) [2, 29–32] with a constant term P0 
(accounting for losses that do not scale with average output 
current, iO(AVG), such as PD and quiescent power loss, PQ), a term 
proportional to iO(AVG) (overlap and dead time losses), P1, and a 
term proportional to the square of iO(AVG) (ohmic loss), P2. PD is 
simply ED multiplied by the switching frequency, fSW. 

 P P v i R i  . (22) 

vPS (modeling the average voltage drop in overlap and dead 
time loss) can be approximated to 3.5 mV for a converter 
operating at 200 kHz [33], and at 14 mV for a fully integrated 
converter [19]. PQ is about 30 μW [34], while PD is 0.5 mW for 
a converter operating at 200 kHz [33], and at 33 mW for a fully 
integrated converter [28]. Average resistance in the power path, 
RPS, is 100 mΩ for a discrete converter [35], and about 500 mΩ 
for a fully integrated one [36]. 

Fig. 13 illustrates an example of how σS scales with output 
power, PO, for 2 different switched-inductor power supplies: a 
fully integrated system with on-chip inductor operating at 10 
MHz, and a system with a discrete off-chip inductor operating 
at 200 kHz. Fig. 13 also displays how P0, P1, and P2 scale with 
PO for a fully integrated converter. Gate-drive loss is 
independent of output power. As PO increases, ohmic loss starts 
to overwhelm all other losses, so the savings made on PG starts 
to become less significant. Nonetheless, because of the high 
switching frequency, fSW, which the fully integrated converter 
is operating at, at low power levels, recycling results to a total 
loss saving of nearly 50%. This is because at low PO, P0 (namely 
gate-charge loss) accounts for a very large portion of the total 
loss at a high fSW. However, this total energy savings is only 
25% at low power for a converter with an off-chip inductor 
operating at a lower fSW. 
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Fig. 13. Fractional weight of savings across PO. 

When ED represents a significant fraction of the total loss 
(ohmic loss, gate-drive loss, etc.) occurring in the power 
supply, salvaging allows a noticeable improvement in the 
power efficiency of the system [3]. This is especially true for 
instance for fully integrated switched-inductor with on-chip 
inductor that operate at a very high fSW [28]. However, 
salvaging gate-drive energy on an already optimized for low 
loss power stage may not yield significant improvements. 

V. CONCLUSIONS 

This paper has presented 2 implementations of a circuit to 
salvage gate-drive energy. Gate energy can be recovered to the 
large output capacitance of the power supply, with simulation 
results indicating that recovering up to 70% of the gate energy 
is feasible. Recycling the gate energy to another gate makes it 
possible to save up to 50% of driver energy, which can result in 
a total loss saving of nearly 50% for a high frequency fully 
integrated converter with an on-chip inductor. This loss saving 
is up to 25% for a converter operating at a lower frequency with 
an off-chip inductor. Additionally, this salvaging circuit is a 
fully integrated solution that uses a bond wire inductor and does 
not rely on complex and precise timing for operation. 
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