State-of-the-Art in Phase-Locked Loop Filter Integration

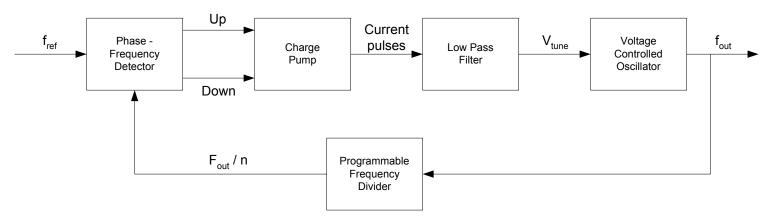
Matt Duff Advisor: Dr. Gabriel A. Rincón-Mora

Introduction

GOAL: Integrate all components of a PLL on-chip: allowing easy inclusion in system-on-a-chip designs.

WHY IS THIS HARD?

Capacitors in the loop filter are very large, so consume too much silicon area. Historically, the loop filter has been placed off chip.


POSSIBLE SOLUTIONS:

- Passive filter with large resistance
- Active filter
- Dual path (combination of both active and passive)
- Discrete Time
- Capacitor Multiplier

EXAMPLE APPLICATIONS: Bluetooth; Cell Phones; consumer products requiring a frequency synthesizer

PLL Block Diagram

EASY TO INTEGRATE BLOCKS:

- Phase-Frequency detector: Two D flip-flops and an AND gate
- Charge pump: Two current sources and two switches

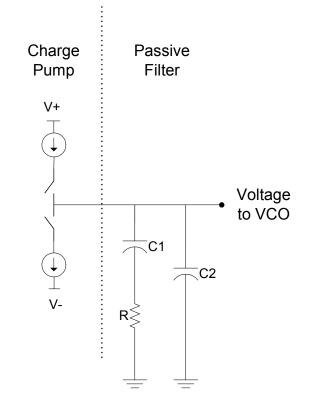
• **Frequency divider**: Can be simple or complicated. But consists solely of active devices, so easy to integrate.

HARD TO INTEGRATE BLOCKS:

- VCO Difficult to make high quality inductors on-chip
- Loop Filter Capacitors consume large amounts of silicon area

Passive Filter with Large Resistor

Method: Bandwidth is proportional to the charge pump current and C. Decrease charge pump current to decrease capacitance


But: Decrease the loop current \rightarrow must increase loop filter's R to keep the PLL stable.

Issues:

- Thermal noise from large resistor
- Charge pump noise: overall current decreases \rightarrow noise current is a bigger proportion of total

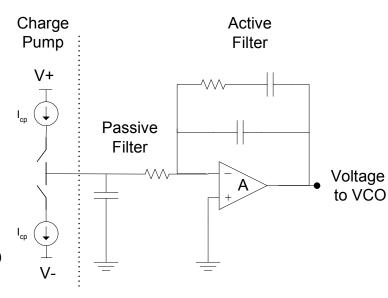
Application areas:

- Noise tolerant designs
- Large loop bandwidths
- Quick design time
- Low power.

Active Filter

Method: Active filter for higher order filters:

- More flexibility
- Better noise filtering


But: Doesn't address fundamental issue of capacitor size.

Issues:

 Requires a passive filter before active filter so op amp doesn't have to work so hard

- Power. Better filtering \rightarrow requires quicker op amp \rightarrow requires more power.
- Op amp noise.

Application areas: Not prevalent in today's literature.

Dual Path

Method:

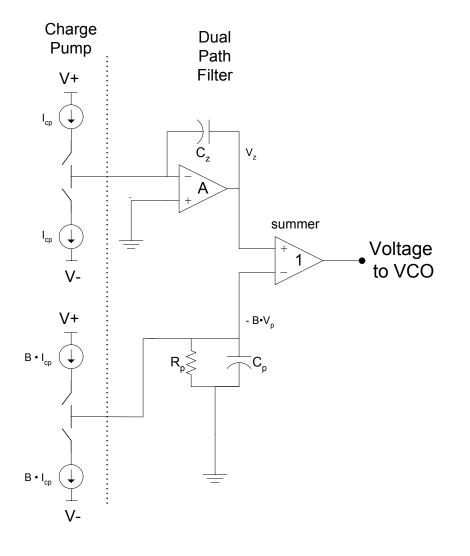
Op amp integrator

- Low frequencies \rightarrow low op amp power
- Tiny current \rightarrow tiny C_z

+

Passive filter

• Large current $\rightarrow R_p$ can be small)

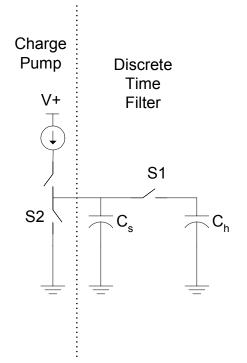

Issues:

•Requires two charge pumps \rightarrow Delay mismatches

Noise from op amp and summer

Application areas:

- Capacitance small \rightarrow quite popular
- Application must be noise tolerant


Discrete Time

Method: Filter cutoff is dependent on switching time, not capacitor size.

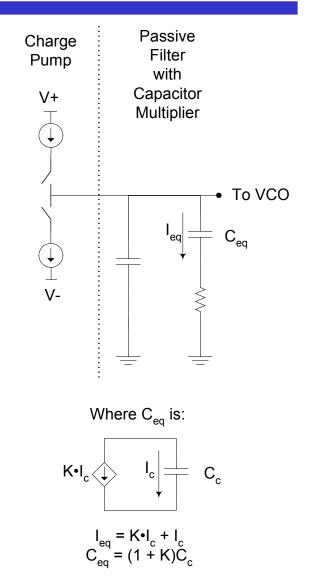
Issues:

- One pole at origin instead of two \rightarrow noise rejection lower
- Clock feedthrough from the sampling switch
- Finite lock-in range

Application areas: Main advantage -fast switching speed, since only one pole at origin (Type 1) instead of standard two (Type 2).

Capacitor Multiplier

Method: Multiply small capacitor into big one with active circuitry.


I = C dV/dt \downarrow KI = KC dV/dt

Issues:

- Power (proportional to charge pump current).
- Leakage current vs. voltage range tradeoff
- ESR. Not a problem in passive circuit configuration, because R dominates.

Application areas:

- Promising newcomer
- Needs more research.

	Large Resistor Passive	Active	Dual Path	Discrete Time	Capacitor Multiplier
Power	Fantastic	Bad	Medium	Good	Medium
Noise	Bad	Medium	Medium	Bad	Good
Area	Bad	Bad	Good	Good	Good

Capacitor multiplier looks promising. Needs more research in power and leakage current.

Can capacitor multiplier and dual path be combined?