Inductor Multipliers for DC-DC Converters

Aditya Makharia

Advisor: Prof. Gabriel A Rincón-Mora

Georgia Tech Analog Consortium

School of Electrical and Computer Engineering

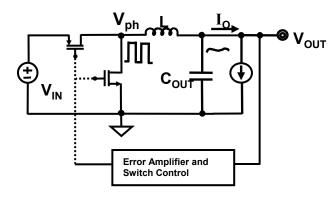
Georgia Institute of Technology, Atlanta, USA

Introduction

Mobile, battery-powered applications require:

» Low Voltage, High Efficiency, High Power, High Accuracy solutions.

» SOC -> Integrated Power Supply circuits (dc-dc) -> Integrated Power Inductors


• State-of-the-art:

- » External inductor -> Take-up PCB Real Estate -> Add Cost
- » **MEMS inductor** \rightarrow Compatible with most fabrication processes \rightarrow Low quality (Q) factor.
- » Charge Pumps \rightarrow No Inductors are needed \rightarrow Very low power applications
- » Linear Regulators -> Poor efficiency -> Low power applications

• Goal:

» Integrate Power Inductors onto the die/package and multiply the effects of a small integrated inductor using Inductor Multipliers).

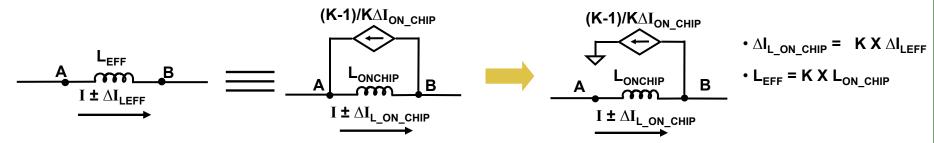
WHY AN INDUCTOR?

• Makes efficient energy transfer to load.

- Digital Signal at V_{ph} ; LC filters it to V_{OUT}
- L determines output current ripple (ΔI_L), voltage ripple (ΔV_{OUT}), and bandwidth.

As $L\downarrow \implies \Delta I_L\uparrow \implies$ Power \uparrow , $V_{O_Ripple}\uparrow \implies$ Accuracy \downarrow

Proposed Approach - Inductor Multiplier


Operation:

» The voltage across the inductor is constant therefore to enhance the value of inductor, current is increased.

$$V = L\frac{di}{dt} = L(K\frac{di}{dt}) \implies K \times L\frac{di}{dt}$$
 \therefore $L_{eff} = K \times L$

Implementation:

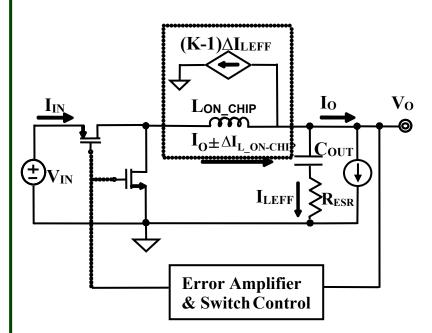
» Use a current-controlled-current-source to sense the ripple current through the inductor, and subtract a portion of it from the node .

Issue:

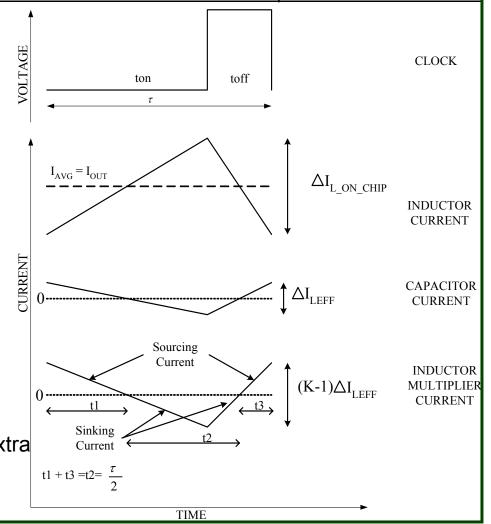
» The potential at node A is greater than B, hence the flow of current is not realizable.

□ Solution:

» Since A is a low-impedence node, take the current to ground.


□ Trade off:

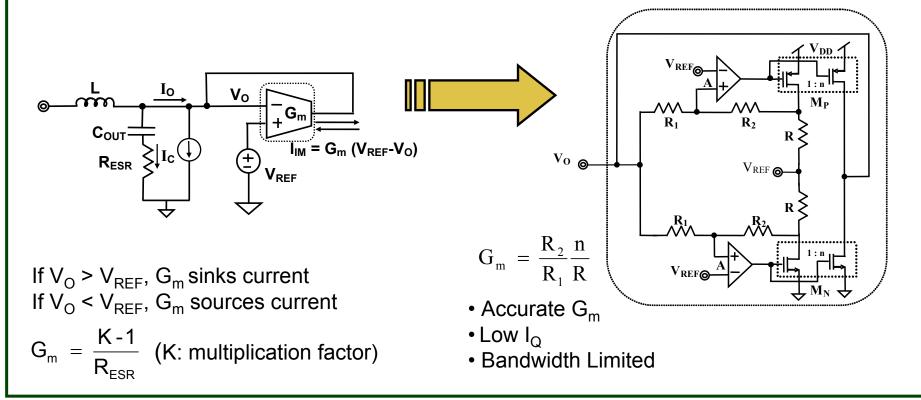
» Increased losses and hence reduced efficiency.


Proposed Approach - Inductor Multiplier

Buck-converter with the inductor multiplier.

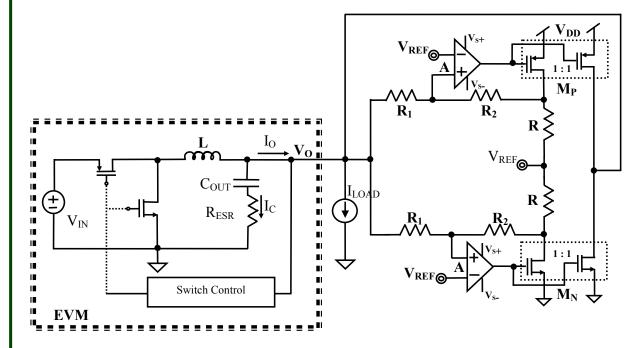
Current waveforms of the inductor multiplier in a buck-converter.

- For times t1 &t3, $I_L < I_{OUT}$; Inductor multiplier sources the required current.
- For t2, $I_L > I_{OUT}$; Inductor multiplier sinks the extra current.



Proposed Approach – Implementation

- Ideal implementation: Sense the current accurately and amplify it. *Cons:* Accurate current sensing techniques are either lossy or complex.
- Proposed implementation:
 - » In a buck converter:


$$V_{OUT} = V_{C} + V_{ESR} + V_{ESL} \approx V_{ESR} = I_{C}R_{ESR}$$

 I_{C} : capacitor ripple current $\equiv \Delta I_{L}$ For electrolytic capacitors, the voltage ripple is **ESR dominant**.

Proposed Approach – Implementation

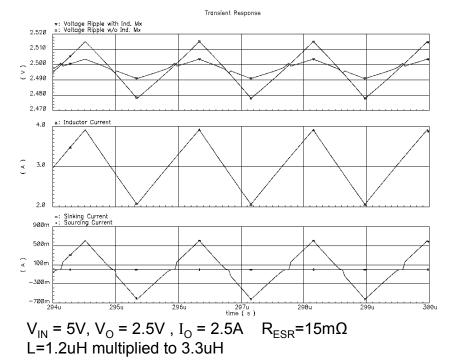
Prototype Implementation of Inductor Multiplier

$$G_{m} = \frac{R_2}{R_1} \frac{1}{R} = 80$$

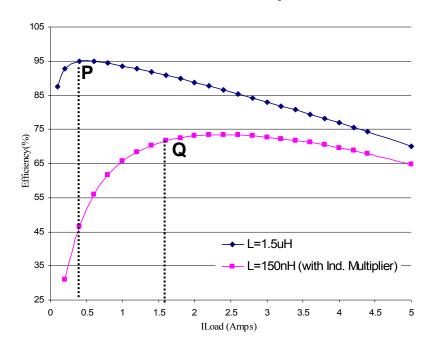
$$f_{-3dB} @ A_{CL} = \frac{R_2}{R_1} = 10^* f_{SW}$$

R= 1 Ω , to obtain large G_m since mirror ratio n=1

For the integrated version $n\sim1000$, $R\sim20\Omega$ and GBW~10MHz


EVM-TPS54610

 V_{IN} : 5V V_O : 2.5V I_{LOAD} : 0-6A f_{sw} : 550 kHz L=1.2uH R_{ESR} in the EVM is ~15-20 mohms. Inductor-Multiplier (M=2.7) V_{DD}: 5.0V V_{RFF}: 2.5V


R: 1Ω R₁:100Ω, R₂: 8kΩ High-Speed Amplifier –A (THS 4271) Gain Bandwidth ~ 500MHz $V_S \pm = \pm 6.0V$ Matched Transistors M_N : NDS9945 (Imax =3A) M_P : NDS9948 (Imax=3A)

Simulation Results

Simulation Results of the Prototype

Efficiency Vs Load Current - Comparison

- Onset of negative I_L at P and Q.
- Peak Efficiency (η) = 74%, @ I_{LOAD} = 2.5A and Multiplication factor=10.
 (n = 70%, for Linear Pequilators)
 - (η = 70% for Linear Regulators).

Conclusions & Future Work

	Charge Pumps	External Inductor	Linear Regulators	MEMS Approach	Inductor Multiplier
SOC Feasibility	Worst	Worst	Best	Good	Best
Output Power	Low	High	Low	Moderate	Moderate
Cost (Process Tech.)	High	Highest	Low	High	Low
Efficiency	Good	Best	Worst	Poor	Moderate
Complexity	Good	Good	Best	Poor	Poor

Conclusion

Inductor multiplier -> SOC/SOP Solution -> medium power portable applications.
Provides better efficiency than the linear regulator.

Future Work:

- Investigation of techniques for the integration of the inductor.
- Evaluate the performance of the prototype and move towards integrated solution.