A Fast, Self-stabilizing, Boost DC-DC Converter - Sliding-mode Vs Hysteretic Controls

Neeraj Keskar Advisor: Prof. Gabriel A. Rincón-Mora

Analog and Power IC Design Lab School of Electrical and Computer Engineering Georgia Institute of Technology April 19, 2005

GEDC Industry Advisory Board, April 2005. © 2005 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.

Motivation

- Significant dependence of converter frequency response on passive components
- Tolerances in capacitor ESR, ESL values
- Variations in inductor, capacitor values per design
- IC solution for frequency compensation required because
 - Reduction in design time
 - Reduction in part count
 - Reduction in board size, cost
 - Ease of design
- Need to have IC solution that will give frequency compensation independent of external components

Hysteretic control provides a way !

Hysteretic Buck Converter

- Hysteretic control regulates output voltage ripple vo
- With switch MPP1 held on: $V_{OUT} = V_{IN}$
- With switch MPP1 held off: $V_{OUT} = 0$
- V_{REF} is between "ON" and "OFF" regions, forming "switching surface"
- System state moves towards switching surface from either side

Issues with Hysteretic Control in Boost Converters

- With switch MNP1 held on: $V_{OUT} = 0$
- With switch MPP1 held off: $V_{OUT} = V_{IN}$
- V_{REF} is **not** between "ON" and "OFF" regions
- System state does not move towards V_{REF} from either side

Solution 1: Sliding-mode Control

- Variable regulated is σ , which is a combination of I_L and V_{OUT}
- Variable $\sigma = K_{I} \cdot (I_{REF} I_{L}) + K_{V} \cdot (V_{REF} V_{OUT})$
- Control regulates σ = 0 using hysteretic controller
- At DC, $I_{REF} = I_L$, hence if $\sigma = 0$, then $V_{REF} = V_{OUT}$

Sliding-mode Control (contd.)

X For large L and small C, $K_I >> K_V$, giving slower, multiple cycle transient

X Also, τ of low pass filter needs to be large slowing transient response

Solution 2: Novel Hysteretic Control

- With switch S_A held on: $V_{OUT} = 0$
- With switch S_A held off: $V_{OUT} = I_D R_{LOAD} > V_{REF}$
- V_{REF} is between "ON" and "OFF" regions
- System state moves towards V_{REF} from either side

Novel Hysteretic Control (contd.)

✓ Fast, single-step (slew-limited) transient response for all filter LC values

X Somewhat large steady-state output voltage ripple

X Lower high-load efficiency because of higher inductor current

Combined Control Strategy

Combination of two previous strategies in multi-mode system Mode 1 (Hysteretic control): Operated during transient for fast response Mode 2 (sliding-mode control): Operated during steady-state for low ripple

Combined Control Strategy (contd.)

- Start-up under hysteretic mode with higher voltage ripple; inductor current higher than that at steady-state value with switch MPP3 switching
- Inductor current decreased by duty-cycle to voltage demodulator until steady state; switch MPP3 then stops switching

Comparison of Load Transient Response

Sliding-mode control

Proposed control

- Load step response: I_{LOAD} from 0.1 to 1 A, L = 5 μ H, C = 47 μ F
- Proposed technique gives a ΔV_{OUT} improvement of more than 650 mV, which is ~ 13% of V_{OUT}

Conclusions

A new multi-mode control strategy was introduced in boost DC-DC converters, combining speed advantages of hysteretic control and low steady-state ripple of sliding-mode control

- This strategy enables a de-coupling between the conflicting requirements of greater relative stability and fast transient response
- Wide variations in LC filter parameters can be accommodated without the use of any external frequency compensation circuit
- Fast, single-step (slew-limited) load transient response obtained in the proposed strategy for a wide range of LC filter parameters as against a compensation bandwidth limited response in conventional control
- An optimal boost DC-DC converter control strategy was introduced as most suitable for integration enabling a simple, user-friendly, and effective solution

