Circuit Design for Accurate and Lossless Current-Sensing in DC-DC Converters

H. Pooya Forghani-zadeh Advisor: Prof. Gabriel Rincón-Mora Georgia Tech Analog and Power IC Lab Georgia Institute of Technology April 2005

System – Normal Operation

GeorgiaInstitute of **Tech**nology

Ping-Pong Operation -Offset Reduction

Georgia Institute of Technology

G_{m1} **Implementation(1)**

GeorgiaInstitute of **Tech**nology

+ and - : Main inputs a+ and a-: Auxiliary path inputs K is the current mirror gain

 $g_{m1} = f(d) = g_{m10} + g_{m11} d/128$

 $I_0 = g_{m1}(V_+ - V_-) + g_{ma}(V_{a+} - V_{a-})$

 $I_{o} = \frac{K}{R_{1}}(V_{+} - V_{-}) + g_{ma}(V_{a+} - V_{a-})$

G_{m1} Implementation(2)

Georgia Institute of Technology

Current Mirror

- Current mirror gain is adjusted digitally
- The switches are not in the signal path and do not effect the AC response

Current Source

- Current source I_4 is adjusted digitally
- Transistors N_a- N_d form a current canceling differential pair with lower transconductance compared to simple differential pair
- Auxiliary offset path is formed in current sources

Simulation Results

Offset Reduction 1.500 **Important design values** L spread 2-6µH R₂ 325-2900KΩ 1.480 12-188mΩ 8 ESR spread R₂No. bits 1.460 R1 in g_{m1} 250KΩ C 60pF 1.440 g_{m1}mirror ratio 1-5 6pF C_{h1}, C_{h2} 2 1.420 Mirror No. bits 7 Clock freq. 1KHz 1.400 **Offset Measured Offset Removed** 1.380 Summary of circuit performance and specifications 1,360 Technology 0.5µm CMOS 1.340 4ØØu 2000 6ØØu 800 01/07/2005 15:05:44 **Hand-Over Event** Supply Voltage 2.7-4.2V (Li-Ion) VT("/vo") 1.39 Temperature range -40° C to 125° C 1.38 $\mathbf{V}_{\mathbf{o}}$ Switching input (V_{in+}) CMR $0-V_{DD}$ (rail to rail) 1.37 Non-switching input CMR 0.8V-V_{DD}-1V (Nom: 1.5V) 1.36 Output-referred offset <5mV1.35 Nonlinearity ($\Delta g_{m1}/g_{m1}$) <-67dB (for rail to rail ICMR) 1.34 BW programmability 1-5KHz, 30Hz steps 1.33 Gain programmability 2.5-40, 0.075 steps 1.32 1.9997r 2.0000 2.0009n 2.0012m 2.0003n 2.0006m time (s) (V_0/V_{in}) GEDC Industry Advisory Board, April 2005. GEDC © 2005 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.

GeorgiaInstitute of **Tech**nology

