#### A Predictive Inductor Multiplier for Integrated Circuit DC-DC Converters

Luke Milner Gabriel A. Rincón-Mora

> Georgia Tech Analog and Power IC Design Lab, April 4, 2005

## **Motivation**

- Portable electronics could be integrated into everything from clothing to coffee mugs.
- However, power management circuits rely on large passive elements, and they perform better if the elements are larger.



# **Motivation**

- Inductor based switching regulators like the Buck converter are more efficient than linear regulators, and more flexible than charge pumps.
- However, inductors are relatively large.





#### **Approaches**

• Feedback relies on capacitor ESR



• Feedforward/Predictive not as accurate



# **Predicting Ripple**

• We generate a triangular voltage waveform of the right proportions, by controlling the flow of current into and out of a capacitor.



#### **Circuit Implementation**



#### **Circuit Implementation**



# **Simulation Results**

 A multiplication factor of over ten has been achieved.

• A slower transient response is observed.



## **Trade-Off**

- Generating the predicted ripple is inherently lossy.
- An alternative like operating the converter at a higher switching frequency can consume even more power.
  Under what circumstances?





# **Trade-Off**

- Generating the predicted ripple is inherently lossy.
- An alternative like operating the converter at a higher switching frequency can consume even more power.
  Under what circumstances?

|                | Faster<br>Switching | Inductor<br>Multiplier | Big<br>Discrete<br>Inductor |
|----------------|---------------------|------------------------|-----------------------------|
| f              | 5.5MHz              | 1MHz                   | 1MHz                        |
| $\Delta I_{L}$ | 136mA               | 750mA                  | 25mA                        |
| DC             | 224mW               | 224mW                  | 224mW                       |
| RMS            | 1.02µW              | 3.09mW                 | 3.44µW                      |
| SW             | 660mW               | 120mW                  | 120mW                       |
| LMX            | 0mW                 | 280mW                  | 0mW                         |
| Total          | 884W                | 628mW                  | 344mW                       |
| Efficiency     | 77.2%               | 82.7%                  | 89.7%                       |

# **Future Work**

- Define the set of circumstances in which it is more efficient to cancel the ripple than reduce it by switching faster.
- Build a PCB prototype.
- Improve the robustness of the circuit and the accuracy of the predicted ripple with tuning for the transconductor and filter.