Fully Integrated Power-Saving Solutions for **DC-DC Converters Targeted for the Mobile**, **Battery-Powered Applications**

> Georgia Tech Analog Consortium **Industry Research Review**

> > Siyuan Zhou

Advisor: Prof. Gabriel A. Rincón-Mora

Analog Integrated Circuits Laboratory School of Electrical and Computer Engineering Georgia Institute of Technology March 21, 2003

Abstract

Motivation for Improving Efficiency in Mobile Applications

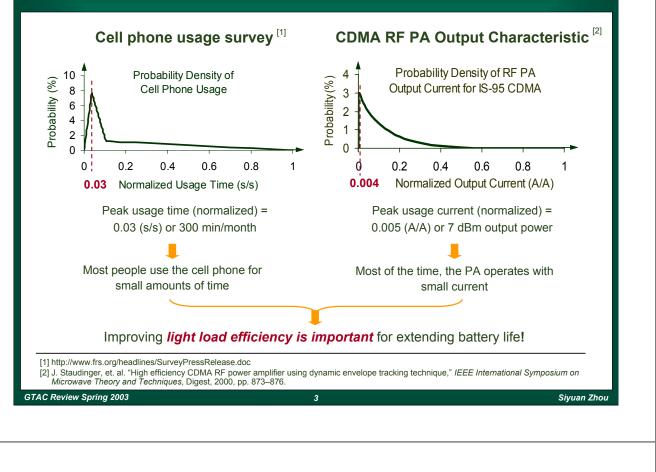
System-On-Chip (SOC)

Low power demands, low cost, and compactness make SOC suitable for portable, battery-powered applications, like cellular phones, pagers, laptop computers, MP3 players, PDAs, etc.

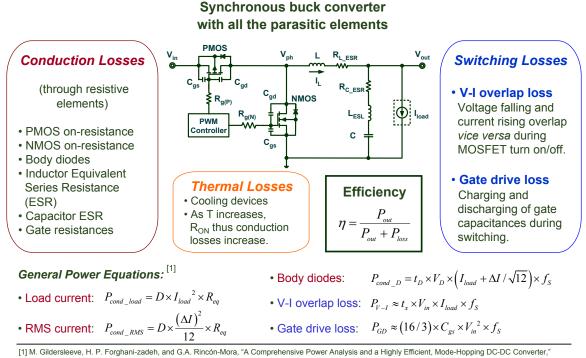
Low-voltage circuits

Required to satisfy the demand for single battery operation and the ever decreasing breakdown voltages of state-of-the-art technologies

Highly efficient, totally integrated DC-DC converters are strongly desired!

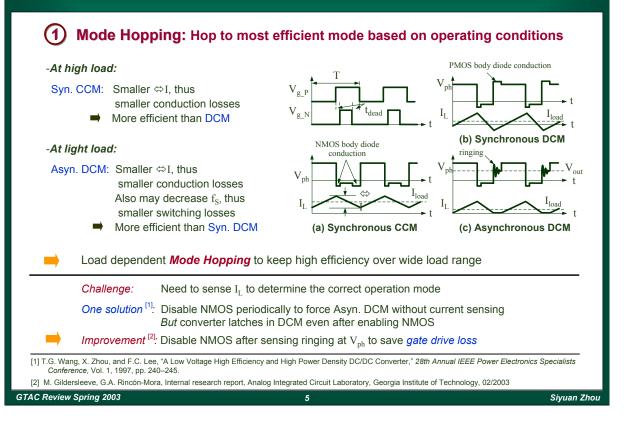

High Efficiency 📥 Low current drain 📥 Maximum battery life

- Total integration 📫 Small size and weight 📫 Optimum portability

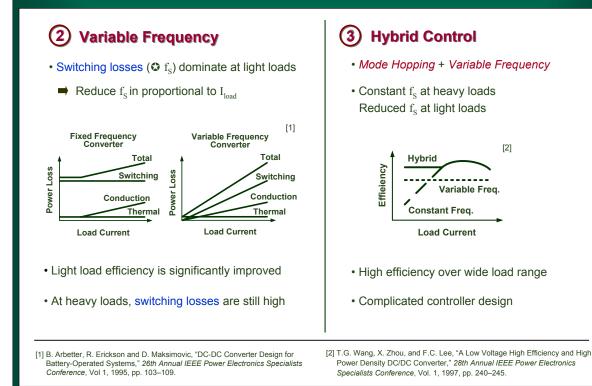

Research Focus

Develop power-saving techniques for low voltage DC-DC converters suitable for *integrated solutions*.

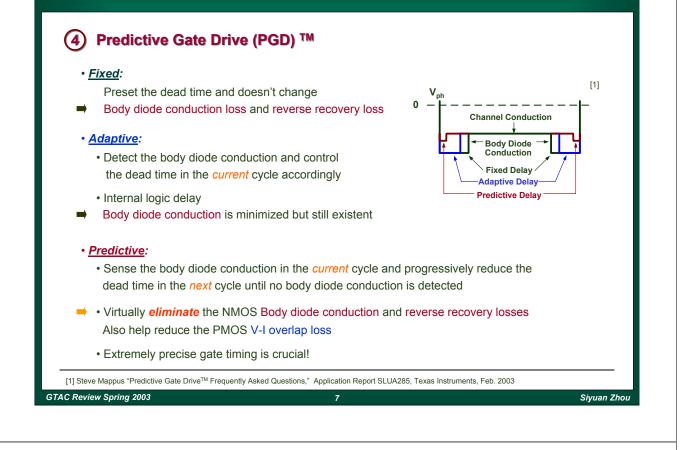
Light load efficiency – Why is it important?

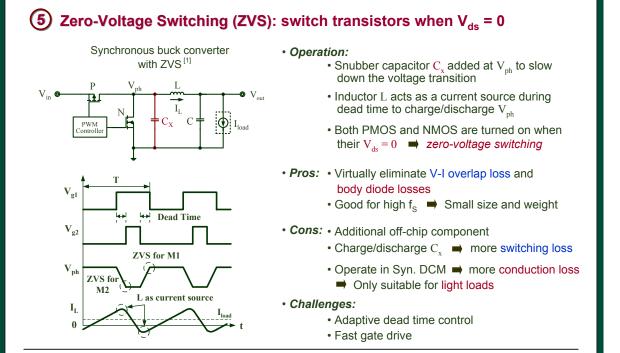


Power Losses – Where do they come from?



[1] M. Gildersleeve, H. P. Forghani-zadeh, and G.A. Rincón-Mora, "A Comprehensive Power Analysis and a Highly Efficient, Mode-Hopping DC-DC Converter," IEEE Asia-Pacific Conference on ASIC, 2002, pp. 153–156.


How to improve efficiency? – Existing techniques


How to improve efficiency? – Existing techniques

How to improve efficiency? – Existing techniques

How to improve efficiency? – Existing techniques

[1] A.J. Stratakos, S.R. Sanders and R. Brodersen, "A Low-Voltage CMOS DC-DC Converter for a Portable Battery-Operated System," 25th Annual IEEE Power Electronics Specialists Conference, Vol. 1, 1994, pp. 619–626.

Comparative Evaluation of Power Saving Techniques

Power Losses (mW)	Operation Condition (V _{in} =3.3V)				Power Saving Techniques				
	$I_{load} = 1 A (CCM)$		$I_{load} = 500 \text{ mA (DCM)}$		1	2	3	4	5
	f _s = 1 MHz	f _s = 500 kHz	f _s = 1 MHz	f _s = 500 kHz	Mode Hop	Vari. Freq.	Hybrid Ctrl.	PGD [™]	ZVS
R _{PMOS}	80 (35%)	79 (45%)	24 (21%)	30 (40%)	\checkmark		\checkmark		
R _{NMOS}	28 (12%)	29 (17%)	5 (4%)	7 (9%)	\checkmark		\checkmark		
V _{Diode}	22 (10%)	9 (5%)	14 (13%)	7 (9%)	Good	Good	Better	Best	Better
R _{L_ESR}	12 (5%)	12 (7%)	4 (4%)	4 (5%)	\checkmark		\checkmark		
R _{C_ESR}	7 (3%)	8 (5%)	5 (4%)	5 (7%)	\checkmark		\checkmark		
R _{Gate}	3 (1%)	2 (1%)	3 (3%)	1 (1%)	\checkmark		\checkmark		
V-I Ov.	73 (32%)	33 (19%)	52 (47%)	19 (26%)		Better	Better	Good	Best
Gate Dr.	5 (2%)	2 (1%)	5 (4%)	2 (3%)		\checkmark	\checkmark		
Tot. Cond.	152(66%)	139(80%)	55 (49%)	55 (73%)	Best	OK	Best	Better	Good
Tot. Sw.	78 (34%)	35 (20%)	57 (51%)	20 (27%)	OK	Better	Better	Good	Best
Total Loss	230	174	112	75					
η	86.4%	90%	89.4%	92.6%					

GTAC Review Spring 2003

Summary

9

- Rank of Losses:
 - #1 Loss: PMOS Conduction Loss 👄
 - #2 Loss: V-I Overlap Loss
 - #3 Loss: NMOS Conduction Loss 👄
 - #4 Loss: Body Diode Losses

 - #6 Loss: Gate Drive Loss

- Reduce R_{PMOS}
- Zero-Voltage Switching
 - Reduce R_{NMOS}
 - ➡ Novel gate drive / dead time control

Siyuan Zhou

- Reduce R_{ESR}
- Reduce parasitic C and/or f_s
- To improve overall efficiency
 improve light load efficiency!
- At heavy loads: Conduction Losses () f (current, ...) dominate At light loads: Switching Losses () f (frequency, ...) dominate
- *Hybrid Control* : best for reducing conduction losses
 ZVS : best for reducing switching losses
 Combine?